1、20概率计算知识网络重难突破知识点一 利用列举法求概率 方法一:直接列举法求概率 当一次试验中,可能出现的结果是有限个,并且各种结果发生的可能性相等时,通常采用直接列举法。 典例1(2018贵州中考真题)如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是()AaB110C16D25【答案】A【详解】如图所示,共有12种情况,恰好摆放成如图所示位置的只有1种,所以概率是,故选A典例2(2018河东区期末)将号码分别为1,2,3,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球,号码为a,放回
2、后乙再摸出一个球,号码为b,则使不等式a-2b+100成立的事件发生的概率为( )A5281B5981C6081D6181【答案】D【详解】由题意知本题是一个等可能事件的概率,试验发生包含的事件是两次分别从袋中摸球,共有99=81种结果,满足条件的事件是使不等式a-2b+100成立的,即2b-a10当b=1,2,3,4,5时,a有9种结果,共有45种结果,当b=6时,a有7种结果当b=7时,a有5种结果当b=8时,a有3种结果当b=9时,a有1种结果共有45+7+5+3+1=61种结果,所求的概率是6181,故选D典例3 (2017莒南县期末)将一颗骰子(正方体)连掷两次,得到的点数都是4的概
3、率是( )AB14C116D【答案】D【解析】连掷两次骰子出现的点数情况,共36种:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).而点数都是4的只有(4,4)一种,所以得到的点数都是4的概率是136,故选D.典例4
4、 (2017西安市期末)有长度分别为3,5,7,9的四条线段,从中任取三条线段能够组成三角形的概率是( )A13B12C23D34【答案】D【解析】解:从4条线段中任意取3条,共有3,5,7;3,7,9;3,5,9;5,7,9四种可能,每种可能出现的机会相同,而其中满足两边之和大于第三边构成三角形的有3,5,7;3,7,9;5,7,9三种可能,所以从中任取三条线段能够组成三角形的概率是34,故选D典例5 (2018河东区期末)用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为( )A12B14C35D23【答案】D【详解】解:用2,3,4三个数字排成一个三位数,等可能的结果有:234
5、,243,324,342,423,432;排出的数是偶数的有:234、324、342、432;排出的数是偶数的概率为:46=23.方法二:列表法求概率 当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。 典例1(2018广西中考真题)从2,1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A23B12C13D14【答案】C【详解】列表如下:积212224122242由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为26=13,故选C典例2(2018山东中考真题)小亮、小莹、大刚三位同学随机地站成一排合影留
6、念,小亮恰好站在中间的概率是( )A12B13C23D16【答案】B【解析】详解: 列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=13故选:B.典例3(2018辽宁中考真题)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A13B49C12D59【答案】D【详解】列表得:所有等可能的情况数有9种,它们出现的可能性相同,其中两次摸出的小球标号的和是偶数的有5种结果,所以两次摸出的小球标号的和是偶数的概率为59,故选:D典例4(2
7、019山东中考真题)从1、2、3、6这四个数中任取两数,分别记为m、n,那么点m,n在函数y=6x图象的概率是( )A12B13C14D18【答案】B【详解】点m,n在函数y=6x的图象上,mn=6列表如下:m111222333666n236136126123mn2362612361861218典例5(2017河南中考真题)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )ABCD【答案】C【详解】列表得,120-11(
8、1,1)(1,2)(1,0)(1,-1)2(2,1)(2,2)(2,0)(2,-1)0(0,1)(0,2)(0,0)(0,-1)-1(-1,1)(-1,2)(-1,0)(-1,-1)由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为416=14,故选C.方法三:树状图法求概率 当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。 典例1(2018山西中考真题)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球两次都摸
9、到黄球的概率是()A49 B13 C29D19 【答案】A【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,两次都摸到黄球的概率为49,故选A典例2(2018河南中考真题)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A916B34C38D12【答案】D【解析】详解:令3张用A1,A2,A3,表示,用B表示,画树状图为:,一共有12种可能的情况,其中两张卡片正面图案相同的有6种情况,故从中随机抽取两张,则这两张卡片正面图案相同的概
10、率是:12故选:D典例3(2018湖北中考真题)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A14B12C34D56【答案】C【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=,故选C典例4(2018河南中考模拟)一个不透明的袋子中有1个红球、2个黄球,这些球除颜色外无其他差别,从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率()A23B13C14D49【答案】D【
11、详解】画树状图为:共有9种等可能的结果,其中两次摸出的球都是黄球的情况为4,所以两次摸出的球都是黄球的概率为49故选D.典例5(2018四川中考模拟)从1,2,3,6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y图象上的概率是()AB13C19D16【答案】B【详解】画树状图得:共有12种等可能的结果,点(m,n)恰好在反比例函数y=6x图象上的有:(2,3),(1,6),(3,2),(6,1),点(m,n)在函数y=6x图象上的概率是:412 =13故选:B知识点二 利用频率估计概率 实际上,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.用频率估计概率 ,
12、虽然不像列举法能确切地计算出随机事件的概率,但由于不受“各种结果出现的可能性相等”的条件限制,使得可求概率的随机事件的范围扩大.典例1(2018吉林省中考)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )A6B16C18D24【答案】B【解析】摸到红色球、黑色球的频率稳定在15%和45%,摸到白球的频率为1-15%-45%=40%,故口袋中白色球的个数可能是4040%=16个故选A典例2(2018青岛市开发区期末)一个密闭不透明的盒子里有若干个白球,在不允许
13、将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球( )A28个B32个C36个D40个【答案】B【详解】设盒中有白球x个,根据题意得:,解得:x=32,经检验,x=32是方程的根,所以盒中有32个白球.故选B典例3(2018浙江中考真题)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球从袋中任意摸出一个球,是白球的概率为( )A12B13C310D15【答案】D【解析】详解: 根据题意 :从袋中任意摸出一个球,是白球的概率为=210=15
14、.故答案为:D典例4(2018上虞市月考)如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()ABCD【答案】A【解析】试题分析:A如图所示:指针落在阴影区域内的概率为:;B如图所示:指针落在阴影区域内的概率为:;C如图所示:指针落在阴影区域内的概率为:;D如图所示:指针落在阴影区域内的概率为:,指针落在阴影区域内的概率最大的转盘是:故选A典例5(2018和平区模拟)在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱通过大量重复摸球实验后发现,摸到红球的频率稳定在25
15、%,那么可以推算出a大约是()A12B9C4D3【答案】A【解析】摸到红球的频率稳定在25%,即3a=25%,即可即解得a的值解:摸到红球的频率稳定在25%,3a=25%,解得:a=12故本题选A.巩固训练一、 单选题(共10小题)1(2018重庆市期末)从3,2,1,0,1这五个数中,随机取出一个数,记为a,若a使得关于x的不等式组x-a0x-53(x-2)无解,且关于x的分式方程x-1x-2-a2-x=3有整数解的概率为()A15B25C35D45【答案】A【解析】试题解析:x-a0x-53x-2,由得,xa,由得,x12,可见,x取-3,-2,-1,0时,不等式组无解;解分式方程x-1x
16、-2-a2-x=3得,x=a+52,当a取-3,-1,1时,分式方程有整数解,当a取-1时,分式方程x=2是增根综上,a取-3时,符合题意,P=15故选A2一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为P0,P1,P2,P3,则P0,P1,P2,P3中最大的是( )AP0BP1CP2DP3【答案】D【详解】根据题意列树状图得:共有36种情况,两个数字之和除以4:和是4、8、12时余数是0,共有9种情况,和是5、9时余数是1,共有8种情况,和是2、6、10时余数是2,共有9种情况,和是3、7、1
17、1时余数是3,共有10种情况,所以P0=936=14 ,P1=836=29 ,P2=936=14 P3=1036=518 P1P0=P2P3.故选D.3(2018湖北中考真题)正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A-22BRC-28D-216【答案】A【详解】如图,连接PA、PB、OP,则S半圆O=122=2,SABP=1221=1,由题意得:图中阴影部分的面积=4(S半圆OSABP)=4(21)=24,米粒落在阴影部分的概率为2-44=-22,故选A4(2019内蒙古中考真题)下列计算9
18、=3 2a23=6a6 3-27=-3,其中任意抽取一个,运算结果正确的概率是()A15B25C35D45【答案】A【详解】运算结果正确的有,则运算结果正确的概率是15,故选:A5(2018广西中考真题)从2,1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A23B12C13D14【答案】C【详解】列表如下:积212224122242由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为26=13,故选C6(2018内蒙古中考真题)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A袋中装
19、有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C先后两次掷一枚质地均匀的硬币,两次都出现反面D先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9【答案】D【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为35,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为12,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为14,不符合题意;D、先后两次掷一枚质地
20、均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为13,符合题意,故选D7(2018山东中考真题)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是2,1,0,1卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A14B13C12D34【答案】B【解析】详解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为412=13,故选:B8(2018河南中考模拟)现有四张质地均匀,大小完全相同的卡片,在其正面分别标有数字1,2,2,3,把卡片背面朝
21、上洗匀,从中随机抽出一张后,不放回,再从中随机抽出一张,则两次抽出的卡片所标数字之和为正数的概率为()A16B29C13D23【答案】D【详解】列表得:-1-223-1(-2,-1)(2,-1)(3,-1)-2(-1,-2)(2,-2)(3,-2)2(-1,2)(-2, 2)(3,2)3(-1,3)(-2,3)(2,3)由表格可知,总共出现的结果又12种,两次抽出的卡片所标数字之和为正数的结果有8种,所以两次抽出的卡片所标数字之和为正数的概率为:.故选D.9(2018龙岗区期末)标号为A、B、C、D的四个盒子中所装有的白球和黑球数如下,则下列盒子最易摸到黑球的是()A12个黑球和4个白球B10
22、个黑球和10个白球C4个黑球和2个白球D10个黑球和5个白球【答案】A【详解】选项A,摸到黑球的概率为1212+4=0.75;选项B,摸到黑球的概率为1010+10=0.5;选项C,摸到黑球的概率为42+4=23;选项D,摸到黑球的概率为1010+5=23.故选A10(2018茂名市期中)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()A13B23C14D15【答案】B【详解】画树状图为:共有12种等可能的结果数,其中两次摸出的小球的标号的和为奇数的结果数为8,所以两次摸出的小球的标号的和为
23、奇数的概率为812=23,故选:B二、 填空题(共5小题)11(2018江苏中考真题)有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是_【答案】34【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=34.故其概率为:3412(2018浙江中考真题)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是_【答案】13 【解析】详解:根
24、据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号相同的有3种结果,所以两次摸出的小球标号相同的概率是39=13,故答案为:1313(2018湖南中考真题)在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸岀一个乒乓球,恰好是黄球的概率为710,则袋子内共有乒乓球的个数为_.【答案】10【解析】详解:设有x个黄球,由题意得:x3+x=710,解得:x=7,7+3=10,故答案为:1014(2019辽宁中考真题)如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_【答案】13【详解】解:
25、总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积飞镖落在阴影部分的概率是39=13,故答案为:1315(2018广东中考真题)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:_【答案】12【详解】掷一次正六面体骰子向上一面的数字有1、2、3、4、5、6共6种可能,其中奇数有1,3,5共3个,掷一次朝上一面的数字是奇数的概率是=36=12,故答案为:12.三、 解答题(共2小题)16(2018福建中考真题)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提
26、成计算工资若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:估计甲公司各揽件员的日平均件数;小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由【答案】(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公
27、司应聘【详解】(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为430=215;(2)甲公司各揽件员的日平均件数为3813+399+404+413+42130=39件;甲公司揽件员的日平均工资为70+392=148元,乙公司揽件员的日平均工资为387+397+408+5+34+15+23630 =40+-27+-17304+15+23306=159.4元,因为159.4148,所以仅从工资收入的角度考虑,小明应到乙公司应聘17(2018山东中考真题)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷某校数学兴趣小组设计
28、了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为 ;(2)将条形统计图补充完整观察此图,支付方式的“众数”是“ ”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率【答案】(1)200、81;(2)补图见解析;(3)13 【解析】分析:(1)用支付宝、现金及其他的人数和除以这三者的百分比之和可得总人数,再用
29、360乘以“支付宝”人数所占比例即可得;(2)用总人数乘以对应百分比可得微信、银行卡的人数,从而补全图形,再根据众数的定义求解可得;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案详解:(1)本次活动调查的总人数为(45+50+15)(115%30%)=200人,则表示“支付宝”支付的扇形圆心角的度数为36045200=81,故答案为:200、81;(2)微信人数为20030%=60人,银行卡人数为20015%=30人,补全图形如下:由条形图知,支付方式的“众数”是“微信”,故答案为:微信;(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:画树状图得:共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,两人恰好选择同一种支付方式的概率为39=13