1、高考资源网() 您身边的高考专家绝密启用前安徽省示范高中培优联盟2020年春季联赛(高一)数学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至第2页,第II卷第3至第4页。全卷满分150分,考试时间120分钟。考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹
2、清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。4.考试结束,务必将试题卷和答题卡一并上交。第I卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。)(1)已知集合Ax|x210,Bx|ylog2x,则AB(A)1,) (B)(1,) (C)(,1 (D)(,1)(2)已知x0,y0,且1,则xy的最小值为(A)8 (B)9 (C)12 (D)6(3)定义在R上的函数f(x)同时满足:对任意的
3、xR都有f(x1)f(x);当x(1,2时,f(x)2x。若函数g(x)f(x)logax(a1)恰有3个零点,则a的最大值是(A)5 (B)2 (C)3 (D)4(4)已知向量a(2,1),b(,2),若a与b的夹角为钝角,则的取值范围是(A)(1,4)(4,) (B)(2,) (C)(1,) (D)(,1)(5)已知各项均为正数的等比数列an的前3项和为7,且a53a34a1,则a3(A)16 (B)8 (C)4 (D)2(6)若cos(),则cos(2)(A) (B) (C) (D)(7)已知锐角ABC的内角A,B,C的对边分别为a,b,c,2asinCc,a1,则ABC的周长取最大值时
4、面积为(A) (B) (C) (D)4(8)在ABC中,AD为BC边上的中线,已知E为AD的中点,令a,b,若过点E的直线分别交AB,AC于P,Q两点,且ma,nb,则(A)4 (B)3 (C)5 (D)(9)函数y的图象大致为(10)若数列an的首项a121,且满足(2n3)an1(2n1)an4n28n3,则a24的值为(A)1980 (B)2000 (C)2020 (D)2021(11)已知P(1,2)是函数f(x)Asin(x)(A0,0)的图像的一个最高点,B,C是与P相邻的两个最低点。设BPC,若tan,则f(x)的图像对称中心可以是(A)(0,0) (B)(1,0) (C)(,0
5、) (D)(,0)(12)已知函数yf(3x1)为奇函数,yf(x)与yg(x)图像关于yx对称,若x1x20,则g(x1)g(x2)(A)2 (B)2 (C)1 (D)1第II卷(非选择题 共90分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。二、填空题(本大题共4小题,每小题5分,共20分。把答案填在答题卡的相应位置。)(13)在平面直角坐标系xOy中,角的顶点为坐标原点,始边与x轴的非负半轴重合,终边交单位圆O于点P(x,y),且xy,则cos(2)的值是 。(14)平行四边形ABCD中,AB2,AD1,1,点M在边CD上,则的最小值为 。(15)在AB
6、C中,角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,且,则的值是 。(16)已知函数f(x),若f(a)f(a),则a的取值范围是 。三、解答题(本大题共6小题,共70分。解答应写出必要的文字说明、证明过程或演算步骤。)(17)(本题满分10分)已知全集为R。函数f(x)log(x1)的定义域为集合A,集合Bx|(xcos0)(exe2)0。(I)求AB;(II)若Cx|1m0,且f(2xf(x)f(7),求实数x的取值范围;(III)设g(x)xk,h(x),若对于任意的x1,x2,x37,9),都有g(x1)|h(x2)h(x3)|,求实数k的取值范围。安徽省示范高中培优联
7、盟2020年春季联赛(高一)数学(理科)参考答案及评分标准选择题答案:1-5 BBCAC 6-10 CCACA 11-12 DA1答案:B解析:Ax|x210x|x1(,1)(1,),B(0,),则AB(1,)2答案:B解析:由题意可得1,则xy(xy)5529,当且仅当x3,y6时等号成立,故xy的最小值为9.选B.3答案:C解析:画出函数yf(x)的图象,如下图所示又由题意可得,若函数ylogax的图象与函数yf(x)的图象有交点,则需满足a1.结合图象可得,要使两函数的图象有三个交点,则需满足,解得20时,y,所以函数y在(0,)上单调递减,所以排除选项B,D;又当x1时,y0,所以si
8、nC. 又0C,所以C.5分(2)由正弦定理易知2,解得b3.7分又,所以ADACb,即AD2.在ABC中,因为ABC,C,所以A,所以在ABD中,A,AB,AD2,由余弦定理得BD110分由可知的外接圆半径为1.12分19解:(1)设数列an的首项为a1,依题意,解得a11,d2,数列an的通项公式为an2n1.5分(2)bn11, 8分Sn.12分20解:ABC三个内角A、B、C依次成等差数列,B60.2分设A、B、C所对的边分别为a、b、c,由ABC的面积S3acsinB可得ac12.(1)sinC3sinA,由正弦定理知c3a,a2,c6.4分在ABC中,由余弦定理可得b2a2c22a
9、ccosB28,b2,即AC的长为2. 6分(2)BD是AC边上的中线,(),2(222)(a2c22accosB)(a2c2ac)(2acac)9,当且仅当ac=时取“”,|3,即BD长的最小值为3,此时ABC为等边三角形12分(其他解法请酌情赋分)21.【解析】(1),这就是函数的全部零点.已知函数的全部正数的零点构成等差数列an,则其首项等于,公差等于1,an的通项公式就是5分(2) 7分利用错位相减法得12分22解:(1)若,则表示不超过的最大整数,所以,故的取值范围为;3分(2) 若,可得,,则,5分当时,不符合. 当时,不符合. 则时,不符合.当时,所以,解得.所以实数的取值范围为;8分方法二:画出两直线与函数y=f(x)的图像,由图象观察得:实数的取值范围为.(3) 在单调递减,在单调递增.可得,则,所以在恒成立,即,整理得在恒成立,10分当时, 在恒成立,即,当时, 在恒成立,即,综上可得: 实数的取值范围为.12分- 11 - 版权所有高考资源网