ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:61.30KB ,
资源ID:186222      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-186222-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《新教材》2021-2022学年高中数学北师大版选择性必修第一册训练:第一章 2-2 圆的一般方程 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《新教材》2021-2022学年高中数学北师大版选择性必修第一册训练:第一章 2-2 圆的一般方程 WORD版含解析.docx

1、第一章直线与圆2圆与圆的方程2.2圆的一般方程课后篇巩固提升合格考达标练1.若方程ax2+ay2-4(a-1)x+4y=0表示圆,则实数a的取值范围是()A.RB.(-,0)(0,+)C.(0,+)D.(1,+)答案B解析当a0时,方程为x-2a-2a2+y+2a2=4(a2-2a+2)a2,由于a2-2a+2=(a-1)2+10恒成立,当a0时,方程表示圆.当a=0时,易知方程为x+y=0,表示直线.综上可知,实数a的取值范围是(-,0)(0,+).2.已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A.x2+y2+4x-2y-5=0B.x2+y2-4x

2、+2y-5=0C.x2+y2+4x-2y=0D.x2+y2-4x+2y=0答案C解析设直径的两个端点分别为A(a,0),B(0,b),圆心为点(-2,1),由线段中点坐标公式得a+02=-2,0+b2=1,解得a=-4,b=2.半径r=(-2+4)2+(1-0)2=5,圆的方程是(x+2)2+(y-1)2=5,即x2+y2+4x-2y=0.3.圆x2+y2-2x+4y+3=0的圆心到直线x-y=1的距离为()A.2B.22C.1D.2答案D解析因为圆心坐标为(1,-2),所以圆心到直线x-y=1的距离为d=|1+2-1|2=2.4.已知圆C的圆心坐标为(2,-3),且点(-1,-1)在圆上,则

3、圆C的方程为()A.x2+y2-4x+6y+8=0B.x2+y2-4x+6y-8=0C.x2+y2-4x-6y=0D.x2+y2-4x+6y=0答案D解析易知圆C的半径为13,所以圆C的标准方程为(x-2)2+(y+3)2=13,展开得一般方程为x2+y2-4x+6y=0.5.圆C:x2+y2+4x-2y+3=0的圆心是.半径是.答案(-2,1)2解析由圆C:x2+y2+4x-2y+3=0,得(x+2)2+(y-1)2=2,圆C的圆心坐标为(-2,1),半径为2.6.点P(x0,y0)是圆x2+y2=16上的动点,点M是OP(O为原点)的中点,则动点M的轨迹方程为.答案x2+y2=4解析设M(

4、x,y),则x=x02,y=y02,即x0=2x,y0=2y.又点(x0,y0)在圆上,4x2+4y2=16,即x2+y2=4.7.当方程x2+y2+kx+2y+k2=0所表示的圆的面积取最大值时,直线y=(k-1)x+2的倾斜角=.答案34解析圆的半径r=12k2+4-4k2=124-3k2,当k=0时,rmax=1,直线y=(k-1)x+2的斜率为-1,倾斜角为34.8.已知三角形的三个顶点的坐标分别为A(4,1),B(-6,3),C(3,0),求这个三角形外接圆的一般方程.解设圆的方程为x2+y2+Dx+Ey+F=0,A,B,C三点都在圆上,A,B,C三点的坐标都满足所设方程,把A(4,

5、1),B(-6,3),C(3,0)的坐标依次代入所设方程,得4D+E+F+17=0,-6D+3E+F+45=0,3D+F+9=0,解得D=1,E=-9,F=-12,所以所求圆的方程为x2+y2+x-9y-12=0.等级考提升练9.若a-2,0,1,23,则方程x2+y2+ax+2ay+2a2+a-1=0表示的圆的个数为()A.0B.1C.2D.3答案B解析根据题意,若方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则有a2+(2a)2-4(2a2+a-1)0,解得-2a23,又a-2,0,1,23,则a=0.方程x2+y2+ax+2ay+2a2+a-1=0表示的圆的个数为1.10.已知

6、圆C与圆x2+y2-2y=0关于直线x-y-2=0对称,则圆C的方程是()A.(x+1)2+y2=1B.(x-3)2+(y+2)2=1C.(x+3)2+(y-2)2=1D.(x+2)2+(y-3)2=1答案B解析将圆x2+y2-2y=0化成标准形式,得x2+(y-1)2=1,已知圆的圆心为(0,1),半径r=1.圆C与圆x2+y2-2y=0关于直线x-y-2=0对称,圆C的圆心C与点(0,1)关于直线x-y-2=0对称,半径也为1.设C(m,n),可得1-n-m=-1,12m-1+n2-2=0,解得m=3,n=-2,C(3,-2),可得圆C的方程是(x-3)2+(y+2)2=1.11.(多选题

7、)圆x2+y2-4x-1=0()A.关于点(2,0)对称B.关于直线y=0对称C.关于直线x+3y-2=0对称D.关于直线x-y+2=0对称答案ABC解析圆x2+y2-4x-1=0,即圆(x-2)2+y2=5,它的圆心为(2,0),半径等于5,故圆关于点(2,0)对称,且关于经过(2,0)的直线对称,故选ABC.12.若圆x2+y2-2x-4y=0的圆心到直线x-y+a=0的距离为22,则实数a的值为()A.0或2B.0或-2C.0或12D.-2或2答案A解析圆x2+y2-2x-4y=0,即(x-1)2+(y-2)2=5,它的圆心(1,2)到直线x-y+a=0的距离为|1-2+a|2=22,则

8、实数a=0或a=2,故选A.13.若直线l:ax+by+1=0始终平分圆M:x2+y2+4x+2y+1=0的周长,则(a-2)2+(b-2)2的最小值为()A.5B.5C.25D.10答案B解析由题意得直线l过圆心M(-2,-1),则-2a-b+1=0,即b=-2a+1.所以(a-2)2+(b-2)2=(a-2)2+(-2a+1-2)2=5a2+55,所以(a-2)2+(b-2)2的最小值为5.14.已知A(-2,0),B(2,0),动点M满足|MA|=2|MB|,则点M的轨迹方程是.答案x2+y2-203x+4=0解析设M(x,y),由|MA|=2|MB|,A(-2,0),B(2,0),得(

9、x+2)2+y2=2(x-2)2+y2,整理,得3x2+3y2-20x+12=0,即x2+y2-203x+4=0.15.已知圆x2+y2+4x-6y+a=0关于直线y=x+b成轴对称图形,则a-b的取值范围是.答案(-,8)解析由题意知,直线y=x+b过圆心,而圆心坐标为(-2,3),代入直线方程,得b=5,所以圆的方程化为标准方程为(x+2)2+(y-3)2=13-a,所以a13,由此得a-b8.16.已知圆C:x2+y2+Dx+Ey+3=0,圆心在直线x+y-1=0上,且圆心在第二象限,半径长为2,求圆的一般方程.解圆心C的坐标为-D2,-E2,因为圆心在直线x+y-1=0上,所以-D2-

10、E2-1=0,即D+E=-2.又r=D2+E2-122=2,所以D2+E2=20.由可得D=2,E=-4或D=-4,E=2.又圆心在第二象限,所以-D20,即D0,E0,圆M为ABC的外接圆.(1)求圆M的方程.(2)当a变化时,圆M是否过某一定点?请说明理由.解(1)设圆M的方程为x2+y2+Dx+Ey+F=0.圆M过点A(0,a),B(-3a,0),C(3a,0),a2+aE+F=0,3a-3aD+F=0,3a+3aD+F=0,解得D=0,E=3-a,F=-3a.圆M的方程为x2+y2+(3-a)y-3a=0.(2)圆M的方程可化为(3+y)a-(x2+y2+3y)=0.由3+y=0,x2+y2+3y=0,解得x=0,y=-3.圆M过定点(0,-3).5

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3