1、考点测试30等比数列一、基础小题1在等比数列an中,已知a7a125,则a8a9a10a11()A10B25C50D75答案B解析因为a7a12a8a11a9a105,a8a9a10a115225.2已知等比数列an的公比为正数,且a2a69a4,a21,则a1的值为()A3B3CD答案D解析设数列an的公比为q,由a2a69a4,得a2a2q49a2q2,解得q29,所以q3或q3(舍),所以a1.故选D.3在正项等比数列an中,Sn是其前n项和若a11,a2a68,则S8()A8B15(1)C15(1)D15(1)答案B解析a2a6a8,aq68,q,S815(1)4若等比数列an满足an
2、an116n,则公比为()A2B4C8D16答案B解析由anan1aq16n0知q0,又q216,q4.5已知数列an,则“an,an1,an2(nN*)成等比数列”是“aanan2”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件 答案A解析若nN*时,an,an1,an2成等比数列,则aanan2,反之,则不一定成立,举反例,如数列为1,0,0,0,应选A.6已知等比数列an的前n项和为Sna2n1,则a的值为()ABCD答案A解析当n2时,anSnSn1a2n1a2n2a2n2,当n1时,a1S1a,a,a.故选A.7已知数列an为等比数列,a4a72,a5a68,
3、则a1a10()A7B5C5D7答案D解析设数列an的公比为q.由题意,得所以或解得或当时,a1a10a1(1q9)1(2)37;当时,a1a10a1(1q9)(8)7.综上,a1a107.故选D.8已知各项不为0的等差数列an,满足2a3a2a110,数列bn是等比数列,且b7a7,则b6b8_.答案16解析由题意可知,b6b8ba2(a3a11)4a7,a70,a74,b6b816.二、高考小题9已知等比数列an满足a1,a3a54(a41),则a2()A2B1CD答案C解析设an的公比为q,由等比数列的性质可知a3a5a,a4(a41),即(a42)20,得a42,则q38,得q2,则a
4、2a1q2,故选C.10若三个正数a,b,c成等比数列,其中a52,c52,则b_.答案1解析a,b,c成等比数列,b2ac(52)(52)1,又b0,b1.11在数列an中,a12,an12an,Sn为an的前n项和若Sn126,则n_.答案6解析由已知得an为等比数列,公比q2,由首项a12,Sn126,得126,解得2n1128,即n6.12已知an是等差数列,公差d不为零若a2,a3,a7成等比数列,且2a1a21,则a1_,d_.答案1解析a2,a3,a7成等比数列,aa2a7,即(a12d)2(a1d)(a16d),解得da1,2a1a21,3a1d1,由可得a1,d1.13等比数
5、列an的各项均为正数,且a1a54,则log2a1log2a2log2a3log2a4log2a5_.答案5解析由等比数列的性质,知a1a5a2a4a4a32,所以log2a1log2a2log2a3log2a4log2a5log2(a1a2a3a4a5)log2a5log225.三、模拟小题14已知等比数列an的公比q2,且2a4,a6,48成等差数列,则an的前8项和为()A127B255C511D1023答案B解析2a4,a6,48成等差数列,2a62a448.2a1q52a1q348,又q2,a11.S8255.15已知等比数列an满足a12,a3a54a,则a3的值为()AB1C2D
6、答案B解析an为等比数列,设公比为q,由a3a54a可得:a4a,即q4.q2,a3a1q21.16已知数列an是首项a1的等比数列,其前n项和Sn中S3,若am,则m的值为()A8B10C9D7答案A解析设数列an的公比为q,若q1,则S3,不符合题意,q1.由得ann1n1,由amm1,得m8.17设等比数列an的各项均为正数,公比为q,前n项和为Sn.若对任意的nN*,有S2n1,且2(anan2)5an1,nN*.(1)求q;(2)若aa10,求数列的前n项和Sn.解(1)2(anan2)5an1,2(ananq2)5anq.由题意,得an0,2q25q20.q2或q.q1,q2.(2
7、)aa10,(a1q4)2a1q9.a1q2.ana1qn12n.n.Sn2.5数列an满足a11,an13an2n.证明:(1)数列an2n是等比数列;(2)对一切正整数n,有2n(n2),故1n.6已知数列an中,a11,anan1n,记T2n为an的前2n项的和,bna2na2n1,nN*.(1)判断数列bn是否为等比数列,并求出bn;(2)求T2n.解(1)anan1n,an1an2n1.,即an2an.bna2na2n1,.bn是公比为的等比数列a11,a1a2,a2b1a1a2.bnn1.(2)由(1)可知an2an,a1,a3,a5,是以a11为首项,以为公比的等比数列;a2,a4,a6,是以a2为首项,以为公比的等比数列T2n(a1a3a2n1)(a2a4a2n)3.