1、学业分层测评(建议用时:45分钟)学业达标一、选择题1准线与x轴垂直,且经过点(1,)的抛物线的标准方程是()Ay22xBy22xCx22yDx22y【解析】由题意可设抛物线的标准方程为y2ax,则()2a,解得a2,因此抛物线的标准方程为y22x,故选B.【答案】B2以双曲线1的右顶点为焦点的抛物线的标准方程为()Ay216xBy216xCy28xDy28x【解析】因为双曲线1的右顶点为(4,0),即抛物线的焦点坐标为(4,0),所以抛物线的标准方程为y216x.【答案】A3已知双曲线1(a0,b0)的一条渐近线的斜率为,且右焦点与抛物线y24x的焦点重合,则该双曲线的离心率等于()A.B.
2、C2D2【解析】抛物线的焦点为(,0),即c.双曲线的渐近线方程为yx,由,即ba,所以b22a2c2a2,所以c23a2,即e23,e,即离心率为.【答案】B4抛物线y212x的准线与双曲线1的两条渐近线所围成的三角形的面积为()A3B2C2 D.【解析】抛物线y212x的准线为x3,双曲线的两条渐近线为yx,它们所围成的三角形为边长等于2的正三角形,所以面积为3,故选A.【答案】A5抛物线y28x的焦点到准线的距离是()A1B2C4D8【解析】由y22px8x知p4,又焦点到准线的距离就是p.故选C.【答案】C二、填空题6抛物线y22x上的两点A,B到焦点的距离之和是5,则线段AB的中点到
3、y轴的距离是_【解析】抛物线y22x的焦点为F,准线方程为x,设A(x1,y1),B(x2,y2),则|AF|BF|x1x25,解得x1x24,故线段AB的中点横坐标为2.故线段AB的中点到y轴的距离是2.【答案】27对标准形式的抛物线,给出下列条件:焦点在y轴上;焦点在x轴上;抛物线上横坐标为1的点到焦点的距离等于6;由原点向过焦点的某直线作垂线,垂足坐标为(2,1)其中满足抛物线方程为y210x的是_(要求填写适合条件的序号)【解析】抛物线y210x的焦点在x轴上,满足,不满足;设M(1,y0)是y210x上的一点,则|MF|116,所以不满足;由于抛物线y210x的焦点为,过该焦点的直线
4、方程为yk,若由原点向该直线作垂线,垂足为(2,1)时,则k2,此时存在,所以满足【答案】8抛物线y2x2的准线方程为_【解析】化方程为标准方程为x2y,故,开口向上,准线方程为y.【答案】y三、解答题9求焦点在x轴上,且焦点在双曲线1上的抛物线的标准方程【解】由题意可设抛物线方程为y22mx(m0),则焦点为.焦点在双曲线1上,1,求得m4,所求抛物线方程为y28x或y28x.10已知平面上动点P到定点F(1,0)的距离比点P到y轴的距离大1,求动点P的轨迹方程. 【导学号:18490069】【解】法一设点P的坐标为(x,y),则有|x|1.两边平方并化简,得y22x2|x|.y2即点P的轨
5、迹方程为y24x(x0)或y0(x0)法二由题意知,动点P到定点F(1,0)的距离比到y轴的距离大1,由于点F(1,0)到y轴的距离为1,故当x0时,直线y0上的点符合条件;当x0时,原命题等价于点P到点F(1,0)与到直线x1的距离相等,故点P的轨迹是以F为焦点,x1为准线的抛物线,方程为y24x.故所求动点P的轨迹方程为y24x(x0)或y0(x0)能力提升1已知P为抛物线y24x上的一个动点,直线l1:x1,l2:xy30,则P到直线l1,l2的距离之和的最小值为()A2B4C. D.1【解析】将P点到直线l1:x1的距离转化为点P到焦点F(1,0)的距离,过点F作直线l2的垂线,交抛物
6、线于点P,此即为所求最小值点,P到两直线的距离之和的最小值为2,故选A.【答案】A2过抛物线y24x的焦点F的直线交抛物线于A,B两点,点O为原点,若|AF|3,则AOB的面积为()A.B.C.D2【解析】根据题意画出简图(图略),设AFO(00)则A(2,2),代入方程得p1,抛物线的方程为x22y,设B(x0,3)(x00)的准线过双曲线1(a0,b0)的左焦点F1,点M是两条曲线的一个公共点. 【导学号:18490070】(1)求抛物线的方程; (2)求双曲线的方程【解】(1)把M代入方程y22px,得p2,因此抛物线的方程为y24x.(2)抛物线的准线方程为x1,所以F1(1,0),设双曲线的右焦点为F,则F(1,0),于是2a|MF1|MF|,因此a.又因为c1,所以b2c2a2,于是,双曲线的方程为1.