1、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
2、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
3、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
4、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
5、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
6、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
7、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
8、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
9、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
10、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
11、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
12、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
13、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
14、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
15、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
16、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
17、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
18、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
19、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
20、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不(装订线内不要答题)装订线高一数学(答)12019 2020 学 年 度 下 学 期 期 中 考 试 高 一 试 题数学参考答案及评分标准高一数学(答)219.解:以点A为原点,AB所在直线为x轴,建
21、立平面直角坐标系,则A(0,0),B(2,0),C(2,3),D(0,3)(1)当 =3 时,P(12,32),则 PC=(32,32),PD=(-12,32),PC PD=(32,32)(-12,32)=0,PC PD 6分(2)由三角函数的定义可得 P(cos,sin)(0 2),则 PC=(2-cos,3-sin),PD=(-cos,3-sin),AP=(cos,sin),从而 PC+PD=(2-2 cos,2 3-2 sin),(PC+PD)AP=2 cos -2 cos2+2 3sin -2 sin2=4 sin(+6)-2 0 2,所以当 +6=2,即 =3 时,(PC+PD)AP
22、 取得最大值,最大值为212分20.解:(1)f(x)=cos x(3sin x-cos x)+12=32 sin 2x-12cos 2x=sin(2x-6)所以 f(3)=14分(2)因为 x 0,2 ,所以,-6 2x-6 56所以-12 sin(2x-6)1,8分由不等式 c f(x)c+2 恒成立,所以 c 1,解得-1 c -12,所以实数 c 的取值范围(-1,-12)12分21.解:(1)如图,过点B作BD垂直于地面于点D,过点O作OCBD于点C由于 BOA=,则 BOC=-2根据三角函数的定义,可得 BC=OB sin BOC=4.8 sin(-2)=-4.8 cos 而CD4
23、.80.85.6于是 h=f()=CD+BC=5.6-4.8 cos (0 2)8分(2)由(1)知,h=f()=5.6-4.8 cos (0 2)易得 f(43)=5.6-4.8 cos43=8,即点M到地面的距离是8m12分ABCPDxyCDABOh一、选择题:BBCABBABCACC二、填空题:13.(-,-13)(-13,0)(43,+)14.(3,-3)15.91016.59 32三、解答题17.解:因为 tan(+)=tan +tan 1-tan tan =2+31-2 3=-15分tan =2 0,tan =3 0,且,(0,),所以,(0,2)8分所以,0 +,所以 +=34.
24、10分18.解(1)由 sin +cos =3 55,可得(sin +cos)2=(3 55)2解得:2 sin cos =sin 2=45 2分又因为 (0,4),所以 2(0,2),所以 cos 2=1-sin22=35,所以 tan 2=sin 2cos 2=43.5分(2)因为 (4,2),所以 -4(0,4),因为 sin(-4)=35,所以 cos(-4)=45,7分于是 sin 2(-4)=2 sin(-4)cos(-4)=2425,又 sin 2(-4)=-cos 2,所以 cos 2=-2425,因为 2(2,),所以 sin 2=725,9分又 cos2=1+cos 22=
25、45 ,(0,4),所以 cos =2 55 ,sin =55,所以 cos(+2)=cos cos 2-sin sin 2=-11 52512分不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
26、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
27、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
28、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
29、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
30、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
31、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
32、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
33、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
34、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
35、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
36、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
37、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
38、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
39、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
40、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
41、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
42、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
43、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
44、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不(装订线内不要答题)装订线高一数学(答)12019 2
45、020 学 年 度 下 学 期 期 中 考 试 高 一 试 题数学参考答案及评分标准高一数学(答)219.解:以点A为原点,AB所在直线为x轴,建立平面直角坐标系,则A(0,0),B(2,0),C(2,3),D(0,3)(1)当 =3 时,P(12,32),则 PC=(32,32),PD=(-12,32),PC PD=(32,32)(-12,32)=0,PC PD 6分(2)由三角函数的定义可得 P(cos,sin)(0 2),则 PC=(2-cos,3-sin),PD=(-cos,3-sin),AP=(cos,sin),从而 PC+PD=(2-2 cos,2 3-2 sin),(PC+PD)
46、AP=2 cos -2 cos2+2 3sin -2 sin2=4 sin(+6)-2 0 2,所以当 +6=2,即 =3 时,(PC+PD)AP 取得最大值,最大值为212分20.解:(1)f(x)=cos x(3sin x-cos x)+12=32 sin 2x-12cos 2x=sin(2x-6)所以 f(3)=14分(2)因为 x 0,2 ,所以,-6 2x-6 56所以-12 sin(2x-6)1,8分由不等式 c f(x)c+2 恒成立,所以 c 1,解得-1 c -12,所以实数 c 的取值范围(-1,-12)12分21.解:(1)如图,过点B作BD垂直于地面于点D,过点O作OC
47、BD于点C由于 BOA=,则 BOC=-2根据三角函数的定义,可得 BC=OB sin BOC=4.8 sin(-2)=-4.8 cos 而CD4.80.85.6于是 h=f()=CD+BC=5.6-4.8 cos (0 2)8分(2)由(1)知,h=f()=5.6-4.8 cos (0 2)易得 f(43)=5.6-4.8 cos43=8,即点M到地面的距离是8m12分ABCPDxyCDABOh一、选择题:BBCABBABCACC二、填空题:13.(-,-13)(-13,0)(43,+)14.(3,-3)15.91016.59 32三、解答题17.解:因为 tan(+)=tan +tan 1
48、-tan tan =2+31-2 3=-15分tan =2 0,tan =3 0,且,(0,),所以,(0,2)8分所以,0 +0,知 =T=2,解得 =2.将点(0,3)代入 f(x)=2 sin(2x+)中,有 sin =32,且|2,解得 =3,故 =2,=3 4分(2)由(1)知 f(x)=2 sin(2x+3),作出函数 f(x)=2 sin(2x+3)在一个周期 x-6,56 上的图像.列表如下:x2x+3sin(2x+3)y=f(x)-60001221230071232-1-256200先描点,再作出函数 f(x)=2 sin(2x+3)在一个周期 x-6,56 上的图像,如图所
49、示8分(方法一)先把 y=sin x 的图像向左平移 3 个单位长度,得到y=sin(x+3)的图像;再把 y=sin(x+3)的图像上所有点的纵坐标不变,横坐标缩短到原来的 12,得到 y=sin(2x+3)的图像;最后把y=sin(2x+3)的图像上所有点的横坐标不变,纵坐标伸长到原来的2倍,得到 y=2 sin(2x+3)的图像10分(方法二)先将 y=sin x 的图像上所有点的纵坐标不变,横坐标变为原来的 12,得到y=sin 2x 的图像,把 y=sin 2x 的图像向左平移 6 个单位长度,得到 y=sin(2x+3)的图像;最后把 y=sin(2x+3)的 图 像 上 所 有 点 的 横 坐 标 不 变,纵 坐 标 伸 长 到 原 来 的 2 倍,得 到y=2 sin(2x+3)的图像12分xyO21-1-2-637125612高一数学(答)3高一数学(答)4