1、中位数与众数的认识教学目标:(一)知识与技能:掌握中位数、众数的概念,会求出一组数据的中位数与众数;能结合具体情境体会平均数、中位数和众数三者的区别,能初步选择恰当的数据代表对数据作出自己的正确评判。(二)过程与方法:通过解决实际问题的过程,区分刻画“平均水平”的三个数据代表,让学生获得一定的评判能力,进一步发展其数学应用能力。(三)情感态度与价值观:将知识的学习放在解决问题的情境中,通过数据分析与处理,体会数学与现实生活的联系,培养学生求真的科学态度。教学重点:教学难点:教学方法:教具准备:教学过程:第一环节:情境引入 在当今信息时代,信息的重要性不言而喻,人们经常要求一些信息“用数据说话”
2、,所以对数据作出恰当的评判是很重要的。下面请看一例:某次数学考试,小英得了78分。全班共32人,其他同学的成绩为1个100分,4个90分,22个80分,2个62分,1个30分,1个25分。小英计算出全班的平均分为77.4分,所以小英告诉妈妈说,自己这次数学成绩在班上处于“中上水平”。小英对妈妈说的情况属实吗?你对此有何看法?平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第五的成绩说成处于班级的“中上水平”显然是不属实的。原因是全班的平均分受到了两个极端数据30分和25分的影响,利用平均数反应问题就出现了偏差。怎样说明这个问题呢?我们需要学习新的数据代表中位数与众数。第二环节:合作
3、探究内容:问题:某公司员工的月工资如下: 员 工经理副经理职员A职员B职员C职员D职员E职员F杂工G月工资/元700044002400200019001800180018001200经理说:我公司员工收入很高,月平均工资为2700元。职员C说:我的工资是1900元,在公司算中等收入。职员D说:我们好几个人工资都是1800元。一位应聘者心里在琢磨:这个公司员工收入到底怎样呢?你怎样看待该公司员工的收入?学生四人小组讨论,交流自己的看法,教师对表现积极的学生予以鼓励。上述问题中,经理、职员C、职员D从不同的角度描述了该公司的收入情况:(1)月平均工资2700元,指所有员工工资的平均数是2700元,
4、但只有正、副经理的工资比平均工资高,是他两人的工资把平均工资“拉”高了。(2)职员C的工资是1900元,恰好居于所有员工工资的“正中间”(恰有4人的工资比他高,有4人的工资比他低),我们称1900元是这组数据的中位数。(3)9个员工中有3个人的工资为1800元,出现的次数最多,我们称1800元是这组数据的众数。议一议:你认为用哪个数据表示该公司员工收入的平均水平更合适?结合上述问题的探究,引入中位数、众数的概念: 一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。一组数据中出现次数最多的那个数据叫做这组数据的众数。平均数、中位数、众数都是
5、数据的代表,它们刻画了一组数据的“平均水平”。第三环节:运用提高(练习)1. 20112012 赛季北京金隅队队员身高的中位数、众数分别是多少? 2. 你所调查的50名男同学所穿运动鞋尺码的平均数、中位数、众数分别是多少?你认为学校商店应多进哪种尺码的男式运动鞋?第四环节:课堂小结议一议:平均数、中位数和众数有哪些特征?1. 用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系,对这组数据所包含的信息的反映最为充分,因此在现实生活中较为常用,但它容易受极端值的影响。 2. 用中位数作为一组数据的代表,可靠性比较差,它不能充分利用所有数据的信息,但它不受极端值的影响,当一组数据中有个别数据变动较大时,可用它来描述这组数据的“集中趋势”。3. 用众数作为一组数据的代表,可靠性也比较差,其大小只与这组数据中的部分数据有关,但它不受极端值的影响。当一组数据中某些数据多次重复出现时,众数往往是人们尤为关心的一种统计量。要根据不同的实际需要,确定是用平均数、中位数还是众数来反映数据的平均水平。第五环节:布置作业 板书设计: 课后反思:2