1、二次函数 1、生活中的数学:有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式.
2、(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q收购总额)?2、探究拓展与应用:如图7,矩形ABCD的边AB=6 cm,BC=8 cm,在BC上取一点P,在CD边上取一点Q,使APQ成直角,设BP=x cm,CQ=y cm,试以x为自变量,写出y与x的函数关系式.图73、图8中a是棱长为a的小正方体,图b、图c由这样的小正方体摆放而成,按照这样的方法继续摆放,自上而下分别叫第一层,第二层,第n层,第n层的小正方形的个数记为S,解答下列问题:图8(1)按照要求填表:n1234S136(2)写出当n=10时,S=_;(3)根据上表中的数据,把S作为纵坐标,n作为横坐标,在平面直角坐标
3、系中描出相应的各点;(4)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数的图象上,求出该函数的表达式;若不在,说明理由.图94已知,如图,直线经过和两点,它与抛物线在第一象限内相交于点P,又知的面积为,求的值; 5.已知抛物线y=x2+(2n-1)x+n2-1 (n为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作ABx轴于B,DCx轴于C. 当BC=1时,求矩形ABCD的周长; 试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由.6、 如图,已知抛物线过点A(1,0)、B(4,0)、(1) 求抛物线对应的函数关系式及对称轴;(2) 点C是点C关于抛物线对称轴的对称点,证明直线必经过点C;教学后记:1