ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:365KB ,
资源ID:181354      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-181354-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(山东省临清市高中数学全套教案选修1-1:2.1.2 椭圆的简单几何性质.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

山东省临清市高中数学全套教案选修1-1:2.1.2 椭圆的简单几何性质.doc

1、2.1.2椭圆的简单几何性质教学目标:(1)通过对椭圆标准方程的讨论,使学生掌握椭圆的几何性质,并正确地画出它的图形;领会每一个几何性质的内涵,并学会运用它们解决一些简单问题。(2)培养学生观察、分析、抽象、概括的逻辑思维能力;运用数形结合思想解决实际问题的能力。教学重点:椭圆的简单几何性质及其探究过程。教学难点:利用曲线方程研究曲线几何性质的基本方法和离心率是用来刻画椭的扁平程度的给出过程教学过程:一、复习引入:1椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2标准方程:, ()二、新课讲解:1范围:由标准方程知,椭圆上点的坐标满足不等式,说明椭圆位于直线

2、,所围成的矩形里.2对称性:在曲线方程里,若以代替方程不变,所以若点在曲线上时,点也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲线关于轴对称。若同时以代替,代替方程也不变,则曲线关于原点对称.所以,椭圆关于轴、轴和原点对称.这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心.3顶点:确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标.在椭圆的标准方程中,令,得,则,是椭圆与轴的两个交点。同理令得,即,是椭圆与轴的两个交点.所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点.同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半

3、轴长和短半轴长.由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,且,即4离心率:椭圆的焦距与长轴的比叫椭圆的离心率.,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之, 越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。当且仅当时,两焦点重合,图形变为圆,方程为5.填写下列表格:方程图像a、b、c 焦点 范围对称性椭圆关于y轴、x轴和原点都对称顶点 长、短轴长长轴: A1A2 长轴长 短轴:B1B2短轴长 离心率例1 求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标解:把已知方程化为标准方程,椭圆长轴和短轴长分别为和,离心率,焦点坐标,顶点,例2过适合下列条件的椭圆的标准方程:(1)经过点、;(2)长轴长等于,离心率等于解:(1)由题意,又长轴在轴上,所以,椭圆的标准方程为(2)由已知,所以,椭圆的标准方程为或例3.如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程分析:若设点,则,到直线:的距离,则容易得点的轨迹方程作业:P47第4、5题w.w.w.k.s.5.u.c.o.m

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3