ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:33KB ,
资源ID:180420      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-180420-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022人教七下数学第6章实数6.3实数实数及其性质说课稿.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022人教七下数学第6章实数6.3实数实数及其性质说课稿.doc

1、实数及其性质一、教材分析1、教学内容这节课的教学内容主要介绍无理数、实数的概念以及实数的性质。2、教材的地位和作用本节课是人教版数学七年级(下)第六章最后一个小节的内容,是在学生学习了平方根、立方根以后,接触过“”、“”等具体的无理数的基础上,引入了无理数的概念,从而将数从有理数扩展到实数。在中学阶段,大多数问题都是在实数的范围内研究的,因此,它对今后的数学学习有着非常重要的意义。无理数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,实数和数轴上的点一一对应蕴含着数形结合的思想。所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数学美的有效载体,也是发展

2、学生逻辑思维能力的重要内容。二、目标分析1、教学目标依据课程标准,并结合教材内容及学生的认知水平和思维特点,确定本节课的教学目标:知识目标:了解无理数、实数的概念和实数的分类;知道实数与数轴上的点一一对应。能力目标:让学生感知无理数的存在,经历数系从有理数扩展到实数的过程。通过无理数的引入,培养从特殊到一般、具体到抽象的逻辑思维能力。情感目标:渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系;通过学生之间的相互交流,增强学生的合作意识。2、重点、难点和关键本节课的重点是了解无理数、实数概念和实数的分类。由于学生有了一次从整数扩展到有理数的体验,二次根式的学习又为有理数扩

3、展到实数作了一定的准备,学生学习实数的困难在于无理数的引入,因此难点是正确理解无理数的意义;关键是把数化为小数形式以后区分有理数与无理数的特征。三、教法、学法本节课通过创设问题情境,引导学生回顾认识数的过程,通过合作探索, 经历无理数的产生过程,精心设问,适时、适度采用激励性语言,提高学生积极性,从而较好地完成实数概念的建构,达到教学目标。 并结合计算器、多媒体、实物投投仪等现代教投手段实施教学,体现直观性。 学生通过动手、动口、动脑等活动,主动探索、发现问题;互动合作,解决问题;归纳概括,形成能力。恰如其分的问题设计,真正的让学生进行探究, 突出学生教学主体的地位。四、教学过程1、复习旧知,

4、揭示矛盾,引入概念回顾书本探究活动,复习前面所学的有理数的规律任何一个有理数都可以写成有限小数或无限循环小数,而发现如和不是有理数,但确实是存在的,同时也是如此。出现矛盾以后,来探索无理数的特征,学习实数。2、概念学习由上面有理数的规律从而得出无理数的概念,然后通过举例,先从形式上认识无理数,再归纳总结,帮助学生理解无理数的概念。教师小结:“无理数”和“有理数”仅是名称而已,据说是清朝末年从日本引进时,翻译的讹误,因此不能从词义上理解,它们根本的区别,就是凡是有理数,都可以化成两个整数之比(可看成一个分数),而无理数,无论如何也不能化成两个整数之比(不能化为分数),从而突破本课第一个难点。这样

5、理解无理数的概念了,实数的概念和分类就容易理解。 然后练习讨论,反馈调整,巩固概念。 3、数形结合,突破难点,深化概念前面我们从数本身的特征上探讨了数除了有理数外还有无理数,接下来我们再利用数轴来进行说明。每个有理数都可以用数轴上的点表示,那么数轴上的每一个点都表示有理数吗?无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示和这样的无理数的点吗?(思考)老师用课件演示有在数轴上表示和这样的无理数的点,学习在数轴上用构造法表示无理数。也就是说: 数轴上的点有些表示有理数,有些表示无理数.每一个无理数都可以用数轴上的一个点来表示。所有的实数都可以用数轴上的点表示,数轴上所有的点都对应着一个

6、实数,即实数与数轴上的点是一一对应的关系。然后练习讨论,反馈调整,巩固新知。利用课件显示帮助理解以上内容,由此形象、直观展示实数除了有理数外还包括无理数,深化了实数的概念,数形结合,突破本课的难点。通过练习巩固实数概念,分析实数的分类,弄清带根号的数并不都是无理数,无理数指的是无限不循环小数,不能化为分数的数,这才是它的本质特征,明白数的范围扩大后相反数、绝对值的意义仍不变。 4、实数的相反数、绝对值先复习有理数的相关知识,再完成84页的“思考”,归纳总结:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、绝对值的意义完全一样。再通过课本例题学习及强化练习来巩固新知。5、理清关系

7、 ,概括方法,课堂小结 这节课你有什么新发现?知道了哪些新知识?(1)了解了无理数、实数的意义(2) 实数的分类及实数与数轴上的点的一一对应的关系(3) 数扩充到实数后,相反数、绝对值、倒数的意义仍然不变。启发学生提出新的疑问,培养学生创造性思维,从谈起,我们还可以谈些什么? 例如:其他无理数?圆周率的近似值?由出发,可以造出哪些无理数?无理数与有理数的和、差、积等一定是无理数吗?无理数与无理数的和、差、积等一定是无理数吗?等等一系列问题,有待于我们进一步探索、研究6、布置作业五、设计后感本课精心设计问题情景,积极引导,启发学生进行概念剖析,从学生熟悉的有理数谈起,让学生合作探究其特征 ,进而得到实数的概念,实现了数的范围的进一步扩展 ,尽量让学生亲身体验知识的形成过程,同时掌握分析、解决问题的思想和方法。3

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3