1、 课题:281锐角三角函数【学习目标】: 感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。:逐步培养学生观察、比较、分析、概括的思维能力。重点:难点:【学习重点】理解余弦、正切的概念。【学习难点】熟练运用锐角三角函数的概念进行有关计算。【导学过程】一、自学提纲:1、我们是怎样定义直角三角形中一个锐角的正弦的?EOABCD2、如图,在RtABC中,ACB90,CDAB于点D。已知AC=,BC=2,那么sinACD( )ABCD3、如图,已知AB是O的直径,点C、D在O上,且AB5,BC3则sinBAC= ;sinADC= 4、在RtABC中,C=90,当锐角A确定
2、时,A的对边与斜边的比是 ,现在我们要问:A的邻边与斜边的比呢? A的对边与邻边的比呢?为什么?二、合作交流:探究:一般地,当A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:RtABC与RtABC,C=C =90o,B=B=,那么与有什么关系?三、教师点拨:类似于正弦的情况,如图在RtBC中,C=90,当锐角A的大小确定时,A的邻边与斜边的比、A的对边与邻边的比也分别是确定的我们把A的邻边与斜边的比叫做A的余弦,记作cosA,即cosA=;把A的对边与邻边的比叫做A的正切,记作tanA,即tanA=例如,当A=30时,我们有cosA=cos30= ;当A=45时,我们有t
3、anA=tan45= (教师讲解并板书):锐角A的正弦、余弦、正切都叫做A的锐角三角函数对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数同样地,cosA,tanA也是A的函数例2:如图,在RtABC中,C=90,BC=6,sinA=,求cosA、tanB的值四、学生展示:练习一:完成课本P81 练习1、2、3练习二:1.在中,C90,a,b,c分别是A、B、C的对边,则有() ABCD 本题主要考查锐解三角函数的定义,同学们只要依据的图形,不难写出,从而可判断C正确.2. 在中,C90,如果cos A=那么的值为() ABCD分析? 本题主要考查锐解三角函数及三角变换知识。其思路是:依据条件,可求出;再由,可求出,从而,故应选D.3、如图:P是的边OA上一点,且P点的坐标为(3,4), 则cos_. 五、课堂小结:在RtBC中,C=90,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA,即sinA= = sinA把A的邻边与斜边的比叫做A的余弦,记作 ,即 把A的对边与邻边的比叫做A的正切,记作 ,即 六、作业设置:课本 第85页 习题281复习巩固第1题、第2题(只做与余弦、正切有关的部分)七、自我反思:本节课我的收获: 。3