收藏 分享(赏)

山东省临清市高中数学全套教案选修1-1:3.3.2 函数的极值与导数.doc

上传人:高**** 文档编号:179252 上传时间:2024-05-25 格式:DOC 页数:4 大小:255KB
下载 相关 举报
山东省临清市高中数学全套教案选修1-1:3.3.2 函数的极值与导数.doc_第1页
第1页 / 共4页
山东省临清市高中数学全套教案选修1-1:3.3.2 函数的极值与导数.doc_第2页
第2页 / 共4页
山东省临清市高中数学全套教案选修1-1:3.3.2 函数的极值与导数.doc_第3页
第3页 / 共4页
山东省临清市高中数学全套教案选修1-1:3.3.2 函数的极值与导数.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网( ),您身边的高考专家3.3.2函数的极值与导数一、教学目标知识与技能:理解极大值、极小值的概念; 能够运用判别极大值、极小值的方法来求函数的极值; 掌握求可导函数的极值的步骤;过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 二、教学重点难点教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.三、教学过程:函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的通过研究函数的这些性质,我们

2、可以对数量的变化规律有一个基本的了解我们以导数为工具,对研究函数的增减及极值和最值带来很大方便四、学情分析 我们的学生属于平行分班,学生已有的知识和实验水平有差距。需要教师指导并借助动画给予直观的认识。五、教学方法发现式、启发式新授课教学基本环节:预习检查、总结疑惑情境导入、展示目标合作探究、精讲点拨反思总结、当堂检测发导学案、布置预习六、课前准备1学生的学习准备:2教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。提问(二)情景导入、展示目标。设

3、计意图:步步导入,吸引学生的注意力,明确学习目标。1、有关概念(1).极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点(2).极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点(3).极大值与极小值统称为极值在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点:()极值是一个局部概念由定义,极值只是某

4、个点的函数值与它附近点的函数值比较是大或小;并不意味着它在函数的整个的定义域内最大或最小。()函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个()极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如上图所示,是极大值点,是极小值点,而 ()函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点2. 判别f(x0)是极大、极小值的方法:若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的

5、极小值点,是极小值3. 求可导函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f(x) (2)求方程f(x)=0的驻点(一阶导数为0的x的值)(3)检查 f(x)=0的驻点左右的符号;如果左正右负,那么f(x)在这个驻点处取得极大值;如果左负右正,那么f(x)在这个驻点处取得极小值;如果左右不改变符号,那么f(x)在这个驻点处无极值(三)合作探究、精讲点拨。例1(课本例4)求的极值 解: 因为,所以。令,得下面分两种情况讨论:(1)当0,即,或时;(2)当0,即时.当x变化时, ,的变化情况如下表:2(-2,2)2+00+极大值极小值因此,=; =。函数的图像如图所示。例2求y=(x

6、21)3+1的极值解:y=6x(x21)2=6x(x+1)2(x1)2, 令y=0解得x1=1,x2=0,x3=1当x变化时,y,y的变化情况如下表-1(-1,0)0(0,1)100+0+无极值极小值0无极值当x=0时,y有极小值且y极小值=0例3 设,在和处有极值,且=1,求,的值,并求出相应的值。解:,是函数的极值点,则1,1是方程的根,即有,又,则有,由上述三个方程可知,此时,函数的表达式为,令,得,当变化时,的变化情况表:-1(-1,1)1+00+极大值1极小值1由上表可知, ,(学生上黑板解答)多媒体展示探究思考题。在学生分组实验的过程中教师巡回观察指导。 (课堂实录) (四)反思总

7、结,当堂检测。教师组织学生反思总结本节课的主要内容,并进行当堂检测。设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)(五)发导学案、布置预习。设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。九、板书设计极大值:极大值点:极小值:极小值点:极值:十、教学反思本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。 在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!十一、学案设计(见下页)欢迎广大教师踊跃来稿,稿酬丰厚。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3