1、京改版八年级数学上册第十章分式综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若代数式有意义,则实数的取值范围是()ABCD2、下列运算正确的是()ABCD3、要把分式方程化为整式方程,方程两边要
2、同时乘以()ABCD4、下列运算正确的是()Aa3a2aB(2ab)24a2b2C-3a-2a2-3D(3a3b)26a6b25、小丽在化简分式时,部分不小心滴上小墨水,请你推测()Ax22x+1Bx2+2x+1Cx21Dx22x16、将的分母化为整数,得()ABCD7、对分式,通分时, 最简公分母是()ABCD8、如果,那么代数式的值是()ABC1D39、化简的结果是()AaBa+1Ca1Da2110、计算的结果是()ABC1D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分式方程的解是_2、如果分式有意义,那么x的取值范围是 _3、分式与的最简公分母是_4、若关于
3、x的分式方程的解为正数,则满足条件的非负整数k的值为_5、若,则_三、解答题(5小题,每小题10分,共计50分)1、已知(1)若,则_,_;(2)若,求的值;(3)若,求的最小值2、解分式方程(1)(2)3、当a为何值时,关于x的方程无解.4、2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好已知“太原南北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外)经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟
4、求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间5、计算:(1)(3)0()2+(1)2n(2)(m2)n(mn)3mn2(3)x(x2x1)(4)(3a)2a4+(2a2)3(5)(9)3()3()3-参考答案-一、单选题1、D【解析】【分析】分式有意义的条件是分母不为【详解】代数式有意义,故选D【考点】本题运用了分式有意义的条件知识点,关键要知道分母不为是分式有意义的条件2、D【解析】【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则、分式运算法则分别化简得即可【详解】解:A,故此选项错误,不符合题意;B,故此选项错误,不符合题意;C,故此选项错误,不符合题意;D,故此选项正
5、确,符合题意故选:D【考点】本题考查了整式的运算和分式的运算,解题关键是熟记相关运算法则,准确进行计算,注意运算顺序3、D【解析】【分析】根据最简公分母的确定方法确定分式的最简公分母即可解答.【详解】解:分式的最简公分母2x(x-2),把分式方程化为整式方程,方程两边要同时乘以2x(x-2).故选D.【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根4、C【解析】【分析】根据合并同类项,完全平方公式,同底数幂相乘,积的乘方法则,逐项判断即可求解【详解】解:A、和不是同类项,无法合并,故本选项错误,不符合题意;B、,故本选项错误
6、,不符合题意;C、-3a-2a2-3,故本选项正确,符合题意;D、(3a3b)29a6b2,故本选项错误,不符合题意;故选:C【考点】本题主要考查了合并同类项,完全平方公式,同底数幂相乘,积的乘方法则,熟练掌握相关运算法则是解题的关键5、A【解析】【分析】直接利用分式的性质结合约分得出答案【详解】解:,故*部分的式子应该是x22x+1故选:A【考点】此题主要考查了约分,正确掌握分式的性质是解题关键6、D【解析】【分析】根据分式的基本性质求解【详解】解:将的分母化为整数,可得故选:D【考点】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键7、D【解析】【分析】利用分式通分即可求出答案【
7、详解】最简公分母为:12xy2故选D【考点】本题考查了分式的通分,属于基础题型8、解得:a6且a故选:A【考点】此题考查了分式方程的解,始终注意分母不为0这个条件2C【解析】【分析】先将等式变形可得,然后根据分式各个运算法则化简,最后利用整体代入法求值即可【详解】解:=1故选C【考点】此题考查的是分式的化简求值题,掌握分式的运算法则是解决此题的关键9、B【解析】【分析】先把原式转化成同分母的分式,然后相加,运用平方差公式把分子因式分解,然后分子分母同时除以公因式(a-1)即可.【详解】解:原式= ,故本题答案为:B.【考点】分式的化简是本题的考点,运用平方差公式把分子进行因式分解找到分子分母的
8、公因式是解题的关键.10、C【解析】【分析】根据同分母分式的加法法则,即可求解【详解】解:原式=,故选C【考点】本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键二、填空题1、【解析】【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x的系数化为1,求出x的值,将求出的x的值代入最简公分母中进行检验,即可得到原分式方程的解【详解】解:解:化为整式方程为:3x1x4,解得:x3,经检验x3是原方程的解,故答案为:【考点】此题考查了分式方程的解法注意解分式方程一定要验根,熟练掌握分式方程的解法是关键2
9、、x1【解析】【分析】根据分式有意义的条件分母不为0,即可解答【详解】若分式有意义,则,解得:故答案为:【考点】本题考查使分式有意义的条件掌握分式的分母不能为0是解题关键3、m(m+3)(m3)【解析】【分析】先把两分式化成最简形式得;,然后确定最简公分母即可【详解】解:化简两分式得:,最简公分母是m(m+3)(m3)【考点】本题主要考查了最简公分母,公分母是能使几个分式同时去掉分母的式子,几个含分母的式子系数取其最小公倍数,字母取其最高次数即得公分母4、0【解析】【分析】首先解分式方程,然后根据方程的解为正数,可得x0,据此求出满足条件的非负整数K的值为多少即可【详解】,x0,满足条件的非负
10、整数的值为0、1,时,解得:x=2,符合题意;时,解得:x=1,不符合题意;满足条件的非负整数的值为0故答案为:0【考点】此题考查分式方程的解,解题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解5、1或-2【解析】【分析】根据除0外的数的任何次幂都是1及1的任何次幂都是1,所以当,和时解得或即可得解此题【详解】解:,可分以下三种情况讨论:时,且为偶数时,时, 时,1为奇数,的情况不存在,当时,的情况存在,综上所述,符合条件的a的值为:1,-2,故答案为:1或-2【考点】本题考查了乘方性质的应
11、用,解题的关键是了解乘方是1的数的所有可能情况三、解答题1、 (1);(2)的值为;(3)的最小值为4【解析】【分析】(1)将,代入化简,然后对应的系数相等,即可得;(2)将,代入可得,使相应系数相等可得,将代数式化简为,代入求解即可;(3)根据(2)可得,将化简为,可得,即可得出最小值(1)解:当,时,故答案为:;(2)解:当,时,的值为;(3)解:,由(2)得,当时,原式,当时,取得最小值,最小值为4【考点】题目主要考查整式的乘法及求代数式的值,分式的化简求值,完全平方公式等,熟练掌握各个运算法则是解题关键2、(1)x=-2;(2)无解【解析】【分析】(1)观察可得最简公分母是2(x+3)
12、,方程两边乘最简公分母,可以把分式方程转化为整式方程求解(2)观察可得最简公分母是(x+2)(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】解:经检验时,是原分式方程的解; 经检验时,不是原分式方程的解;原分式方程无解;【考点】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根3、a=1,-4或6时原方程无解【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解确定出a的值即可【详解】由原方程得:2(x+2)+ax=3(x-2),整理得:(a-1)x=-10,(i)当a-1=0,即a
13、=1时,原方程无解;(ii)当a-10,原方程有增根x=2,当x=2时,2(a-1)=-10,即a=-4;当x=-2时,-2(a-1)=-10,即a=6,即当a=1,-4或6时原方程无解【考点】此题考查分式方程的解,熟练掌握分式方程无解的条件是解题的关键4、乘坐“复兴号”G92次列车从太原南到北京西需要小时【解析】【分析】设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据速度=路程时间结合“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,即可得出关于x的分式方程,解之经检验后即可得出结论【详解】设“复兴号”G92次列车从太
14、原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得:,解得:x=,经检验,x=是原分式方程的解,x+=,答:乘坐“复兴号”G92次列车从太原南到北京西需要小时【考点】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键5、 (1)-7;(2)mn+5n3;(3)x3x2x;(4)a6;(5)8.【解析】【分析】(1)根据零指数幂、负整数指数幂可以解答本题;(2)根据积的乘方和同底数幂的乘除法可以解答本题;(3)根据单项式乘多项式可以解答本题;(4)根据积的乘方和同底数幂的乘法可以解答本题;(5)根据幂的乘方可以解答本题【详解】(1)(3)0()2+(1)2n19+17;(2)(m2)n(mn)3mn2m2nm3n3mn2mn+5n3;(3)x(x2x1)x3x2x;(4)(3a)2a4+(2a2)39a2a4+(8a6)9a6+(8a6)a6;(5)(9)3()3()38【考点】本题考查整式的混合运算、幂的乘方、负整数指数幂等,解答本题的关键是明确整式混合运算的计算方法