1、京改版八年级数学上册第十二章三角形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列电视台标志中是轴对称图形的是()ABCD2、如图,1、2、3中是ABC外角的是()A1、2B2、3C1、3D1
2、、2、33、如图,与交于点,则的度数为()ABCD4、如图,若,则下列结论中不一定成立的是()ABCD5、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处灯塔C在海岛在海岛A的北偏西42方向上,在海岛B的北偏西84方向上则海岛B到灯塔C的距离是()A15海里B20海里C30海里D60海里6、如图所示,是的边上的中线,cm,cm,则边的长度可能是()A3cmB5cmC14cmD13cm7、如图,圆柱的底面周长是24,高是5,一只在A点的蚂蚁想吃到B点的食物,沿着侧面需要爬行的最短路径是()A9B13C14D258、如图,在四边形ABCD中,分别以点A,C为圆心,大于长为半
3、径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O若点O是AC的中点,则CD的长为()AB4C3D9、如图,边长为1的正方形网格图中,点,都在格点上,若,则的长为()ABCD10、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC点BD点A第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,C=ABD=90,AC=4,BC=3,BD=12,则AD=_. 2、如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置)测得的相关数据为:米,则_米3、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米
4、,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了_米4、将一张长方形纸条折成如图所示的形状,若1=110,则2=_5、如图,在ABC中,ACB90,ACBC,BECE,ADCE于D,AD2,BE1则DE_三、解答题(5小题,每小题10分,共计50分)1、如图,点E在BC上,且,(1)求证:;(2)判断AC和BD的位置关系,并说明理由2、如图所示,在三角形ABC中,作的平分线与AC交于点E,求证:.3、如图,已知线段a、b和,用尺规作一个三角形,使(要求:不写已知、求作、作法、只画图,保留作图痕迹)4、如图,在ABC中,A=DBC=36,C=72求1,2的度数5、如图,已知
5、ABDC,ACDB,BECE,求证:AEDE.-参考答案-一、单选题1、A【解析】【分析】根据轴对称图形的定义进行判断,即一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形【详解】解:A选项中的图形是轴对称图形,对称轴有两条,如图所示;B、C、D选项中的图形均不能沿某条直线折叠,直线两旁的部分能够互相重合,因此,它们都不是轴对称图形;故选:A【考点】本题考查了轴对称图形的概念,其中正确理解轴对称图形的概念是解题关键2、C【解析】【分析】根据三角形外角的定义进行分析即可得到答案.【详解】解:属于ABC外角的有1、3共2个故选C【考点】本题考查三角形外角的定义,解题的
6、关键是掌握三角形的定义.3、A【解析】【分析】先根据三角形的内角和定理可求出,再根据平行线的性质即可得【详解】故选:A【考点】本题考查了三角形的内角和定理、平行线的性质,熟记平行线的性质是解题关键4、A【解析】【分析】根据翻三角形全等的性质一一判断即可【详解】解:ABCADE,AD=AB,AE=AC,BC=DE,ABC=ADE,BAD=CAE,AD=AB,ABD=ADB,BAD=180-ABD-ADB,CDE=180-ADB-ADE,ABD=ADE,BAD=CDE故B、C、D选项不符合题意,故选:A【考点】本题考了三角形全等的性质,解题的关键是三角形全等的性质5、C【解析】【分析】根据题意画出
7、图形,根据三角形外角性质求出C=CAB=42,根据等角对等边得出BC=AB,求出AB即可【详解】解:根据题意得:CBD=84,CAB=42,C=CBD-CAB=42=CAB,BC=AB,AB=15海里/时2时=30海里,BC=30海里,即海岛B到灯塔C的距离是30海里故选C.【考点】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出C=CAB,题目比较典型,难度不大6、B【解析】【分析】延长AD至M使DM=AD,连接CM,根据SAS得出,得出AB=CM=4cm,再根据三角形的三边关系得出AC的范围,从而得出结论【详解】解:延长AD至M使DM=AD,连接CM,是的边上的中线,BD=C
8、D,ADB=CDM,,MC=AB=5cm,AD=DM=4cm,AM=8cm在中,即:3AC13,故选:B【考点】本题考查了全等三角形的判定与性质以及三角形的三边关系,根据三角形的三边关系找出AC长度的取值范围是解题的关键7、B【解析】【分析】画出该圆柱的侧面展开图,根据两点之间线段最短,可知沿着侧面需要爬行的最短路径即为AB,然后根据勾股定理求出AB即可求出结论【详解】解:该圆柱的侧面展开图,如下图所示,根据两点之间线段最短,可知沿着侧面需要爬行的最短路径即为AB,AB恰为一个矩形的对角线,该矩形的长为圆柱的底面周长的一半,即长为242=12,宽为5,AB=13,即沿着侧面需要爬行的最短路径长
9、为13故选:B【考点】此题考查的是勾股定理与最短路径问题,解题的关键是掌握勾股定理和两点之间线段最短8、A【解析】【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出再根据ASA证明,那么,等量代换得到,利用线段的和差关系求出然后在直角中利用勾股定理求出CD的长【详解】解:如图,连接FC,则,在与中,在中,故选:A【考点】本题考查了作图基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中求出CF与DF是解题的关键9、B【解析】【分析】利用勾股定理求出AB,再减去BC可得AC的长【详解】解:由图可知:AB=,BC=,AC=AB-BC=,故选B【
10、考点】本题考查了二次根式的加减,勾股定理与网格问题,解题的关键是利用勾股定理求出线段AB的长10、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型二、填空题1、13【解析】【分析】先根据勾股定理求出AB的长,再根据勾股定理求出AD的长【详解】在直角三角形ABC中,AC=4,BC=3根据勾股定理,得AB=5在RtABD中,BD=12根据勾股定理,得AD=13.故答案为13【考点】本题考查了勾股定理的应用,能运用勾股定理进行计算是解本题的关键2、48【解析】【分析】先说明A
11、BC是等边三角形,然后根据等边三角形的性质即可解答【详解】解:BAC=180-60-60=60BAC=ABC=BCA=60ABC是等边三角形AC=BC=48米故答案为48【考点】本题考查了等边三角形的判定和性质,证得ABC是等边三角形是解答本题的关键3、9【解析】【分析】在RtABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长【详解】在RtABC中:CAB90,BC17米,AC8米,AB15(米),CD10(米),AD6(米),BDABAD1569(米),答:船向岸边移动了9米,故答案为:9【考点】本题考查了勾股定理的应
12、用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用4、55【解析】【分析】先根据平行线的性质求出的度数,再根据翻折的性质即可得出答案【详解】,纸条的两边互相平行根据翻折的性质得:故答案为:55【考点】本题考查了平行线的性质、图形翻折的性质,掌握理解图形翻折的性质是解题关键5、1【解析】【分析】先证明ACDCBE,再求出DE的长,解决问题【详解】解:BECE于E,ADCE于D,故答案为:1【考点】此题考查三角形全等的判定和性质,掌握再全等三角形的判定和性质是解题的关键三、解答题1、 (1)见解析(2),理由见解析【解析】【分析】(1)运用SSS证明即可;(2
13、)由(1)得,根据内错角相等,两直线平行可得结论(1)在和中,(SSS);(2)AC和BD的位置关系是,理由如下:,【考点】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解答本题的关键2、见解析【解析】【分析】由于BC,AE和BE没在一条线上,不能进行比较;故在BC上截取AE和BE,然后根据等腰三角形、角平分线的知识即可发现全等三角形,证明边的相等关系,最后运用线段的和差关系,即可完成证明.【详解】证明:如图在上截取,连结.在上截取,连结.,平分,又,【考点】本题考查了等腰三角形的性质,在进行线段比较的题目中,可以采用截取法,让它们位于一条直线上,以方便比较.3、见解析【
14、解析】【分析】先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,即可【详解】解:先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,连接,即为所求,如图所示:【考点】本题考查了复杂作图,利用了作一个角等于已知角,作线段等于已知线段,是基本作图,需熟练掌握解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作4、1=36,2=72【解析】【分析】在ABC和BDC中,根据三角形内角和定理,即可得出结论【详解】在ABC中,ABC=180AC=1803672=72,1=ABCDBC=7236=36;在BCD中,2=180DBCC=1803672=72【考点】本题考查了三角形的内角和定理,注意掌握数形结合思想的应用5、见解析【解析】【分析】利用SSS证明ABCDCB,根据全等三角形的性质可得ABC=DCB,再由SAS定理证明ABECED,即可证得AE=DE【详解】证明:在ABC和DCB中, ,ABCDCB(SSS)ABC=DCB在ABE和DCE中,ABEDCE(SAS)AE=DE【考点】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角