ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:701.86KB ,
资源ID:1775228      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1775228-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教版八年级数学上册第十三章轴对称综合训练试卷(含答案详解版).docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

人教版八年级数学上册第十三章轴对称综合训练试卷(含答案详解版).docx

1、人教版八年级数学上册第十三章轴对称综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若点P(m1,5)与点Q (3,2n)关于y轴对称,则m+n的值是()A5B1C5D112、如图,中,BCA=90

2、,ABC=22.5,将沿直线BC折叠,得到点A的对称点A,连接BA,过点A作AHBA于H,AH与BC交于点E下列结论一定正确的是()AAC =AHB2AC=EBCAE=EHDAE=AH3、以下四大通讯运营商的企业图标中,是轴对称图形的是()ABCD4、已知在ABC中,点P在三角形内部,点P到三个顶点的距离相等,则点P是()A三条角平分线的交点B三条高线的交点C三条中线的交点D三条边垂直平分线的交点5、如图,D是等边的边AC上的一点,E是等边外一点,若,则对的形状最准确的是()A等腰三角形B直角三角形C等边三角形D不等边三角形6、点 A (2,-1)关于 y 轴对称的点 B 的坐标为()A(2,

3、 1)B(-2,1)C(2,-1)D(-2,- 1)7、如图,在小正三角形组成的网格中,已有个小正三角形涂黑,还需涂黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则的最小值为()ABCD8、如图,将ABCD沿对角线AC折叠,使点B落在B处,若1=2=44,则B为()A66B104C114D1249、如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A750米B1000米C1500米D2000米10、下列三角形中,等腰三角形的个数是()A4个B3个

4、C2个D1个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BH 是钝角三角形 ABC 的高,AD 是角平分线, 且2C=90-ABH,若 CD=4,ABC 的面积为 12, 则 AD=_2、如图,一束光沿方向,先后经过平面镜、反射后,沿方向射出,已知,则_3、如图,分别以的边,所在直线为称轴作的对称图形和,线段与相交于点O,连接、有如下结论:;平分:;其中正确的结论个数为_4、如图,在中,分别以点为圆心,大于的长为半径画弧,两弧相交于点作直线,交边于点,连接,则的周长为_5、已知:如图,在中,点在边上,则_度三、解答题(5小题,每小题10分,共计50分)1、如图

5、,在ABC和DCB中,AD90,ACBD,AC与BD相交于点O,限用无刻度直尺完成以下作图:(1)在图1中作线段BC的中点P;(2)在图2中,在OB、OC上分别取点E、F,使EFBC2、已知三边长a,b,c满足,试判断的形状并求周长3、如图,在直角坐标系中,的三个顶点坐标分别为,请回答下列问题:(1)作出关于轴的对称图形,并直接写出的顶点坐标;(2)的面积为 4、某班举行文艺晚会,桌子摆成两条直线(),桌面上摆满了橘子,桌面上摆满了糖果,坐在C处的小明先拿橘子再拿糖果,然后回到座位,请你帮他设计路线,使其行走的总路程最短(保留作图痕迹)5、如图,是边长为1的等边三角形,点,分别在,上,且,求的

6、周长-参考答案-一、单选题1、A【解析】【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,求出m、n,问题得解【详解】解:由题意得:m13,2n5,解得:m2,n3,则m+n235,故选:A【考点】本题考查了关于y轴的对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数2、B【解析】【分析】证明,即可得出正确答案【详解】证明:BCA=90,ABC=22.5,沿直线BC折叠,得到点A的对称点A,连接BA,BCA=90,即:,AHBA,是等腰直角三角形,,在和中,,故选项正确,故选;【考点】

7、本题考查了折叠、等腰三角形、等腰直角三角形、三角形全等,解决本题的关键是证明全等,得出线段3、D【解析】【分析】根据轴对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得【详解】解:根据轴对称图形的定义判断可得:只有D选项符合题意,故选:D【考点】题目主要考查轴对称图形的判断,理解轴对称图形的定义是解题关键4、D【解析】【分析】根据线段垂直平分线的性质解答即可【详解】解:在ABC中,三角形内部的点P到三个顶点的距离相等,点P是三条边垂直平分线的交点,故选:D【考点】本题考查了线段垂直平分线的性质,熟练掌握线段垂直平分线上的点到线段的两个端点的距离相等是解答的

8、关键5、C【解析】【分析】先根据已知利用SAS判定ABDACE得出ADAE,BADCAE60,从而推出ADE是等边三角形【详解】解:三角形ABC为等边三角形,ABAC,BDCE,12,在ABD和ACE中,ABDACE(SAS),ADAE,BADCAE60,ADE是等边三角形故选:C【考点】本题考查了等边三角形的判定和全等三角形的判定方法,掌握等边三角形的判定和全等三角形的判定是本题的关键,做题时要对这些知识点灵活运用6、D【解析】【分析】根据点坐标关于轴对称的变换规律即可得【详解】解:点坐标关于轴对称的变换规律:横坐标互为相反数,纵坐标相同则点关于轴对称的点的坐标为,故选:D【考点】本题考查了

9、点坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键7、C【解析】【分析】由等边三角形有三条对称轴可得答案【详解】如图所示,n的最小值为3故选C【考点】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质8、C【解析】【分析】根据平行四边形性质和折叠性质得BAC=ACD=BAC=1,再根据三角形内角和定理可得.【详解】四边形ABCD是平行四边形,ABCD,ACD=BAC,由折叠的性质得:BAC=BAC,BAC=ACD=BAC=1=22,B=180-2-BAC=180-44-22=114,故选C【考点】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质

10、以及三角形内角和定理;熟练掌握平行四边形的性质,求出BAC的度数是解决问题的关键9、B【解析】【详解】解:作A的对称点,连接B交CD于P,AP+PB=,此时值最小,在中,,,点A到河岸CD的中点的距离为500米,B=AP+PB=1000米10、B【解析】【分析】根据题图所给信息,根据边或角分析即可【详解】解:第一个图形中有两边相等,故第一个三角形是等腰三角形, 第二个图形中的三个角分别为50,35,95,故第二个三角形不是等腰三角形;第三个图形中的三个角分别为100,40,40,故第三个三角形是等腰三角形;第四个图形中的三个角分别为90,45,45,故第四个三角形是等腰三角形;故答案为:B【考

11、点】本题考查了等腰三角形的判定,掌握等腰三角形的判定是解题的关键二、填空题1、3【解析】【分析】根据三角形的外角性质和已知条件易证明ABCC,则可判断ABC为等腰三角形,然后根据等腰三角形的性质可得ADBC,BDCD4,再利用三角形面积公式即可求出AD的长【详解】解:BH为ABC的高,AHB90,BAH90ABH,而2C90ABH,BAH2C,BAHC+ABC,ABCC,ABC为等腰三角形,AD是角平分线,ADBC,BDCD4,ABC的面积为12,ADBC12,即AD812,AD3故答案为:3【考点】本题考查了三角形的外角性质、等腰三角形的判定和性质以及三角形的面积,熟练掌握上述知识是解题的关

12、键2、40#40度【解析】【分析】根据入射角等于反射角,可得,根据三角形内角和定理求得,进而即可求解【详解】解:依题意,故答案为:40【考点】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键3、3【解析】【分析】根据轴对称的性质以及全等三角形的性质一一判断即可【详解】解:和是的轴对称图形,故正确;,由翻折的性质得,又,故正确;,边上的高与边上的高相等,即点到两边的距离相等,平分,故正确;只有当时,才有,故错误;在和中,故错误;综上所述,结论正确的是故答案为:3【考点】本题考查轴对称的性质,全等三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型

13、4、【解析】【分析】由题意可得MN为AB的垂直平分线,所以AD=BD,进一步可以求出的周长.【详解】在中,分别以A、B为圆心,大于的长为半径画弧,两弧交于M,N,作直线MN,交BC边于D,连接AD;MN为AB的垂直平分线,AD=BD,的周长为:AD+DC+AC=BC+AC=13;故答案为13.【考点】本题主要考查的是垂直平分线的运用,掌握定义及相关方法即可.5、40【解析】【分析】根据等边对等角得到,再根据三角形外角的性质得到,故,由三角形的内角和即可求解的度数【详解】解:,故答案为:40【考点】本题考查等腰三角形的性质、三角形外角的性质、三角形的内角和,熟练掌握几何知识并灵活运用是解题的关键

14、三、解答题1、(1)见解析;(2)见解析.【解析】【分析】(1)延长BA和CD,它们相交于点Q,然后延长QO交BC于P,则PB=PC,根据线段垂直平分线的逆定理可证明;(2)连结AP交OB于E,连结DP交OC于F,则EFBC分别证明BEPCFP,BEPCFP可得APB=DPC和PEF=PFE,根据三角形内角和定理和平角的定义可得APB=PEF,即可证明EF/BC.【详解】解:(1)如图1,点P为所作,理由如下:AD90,ACBD,BC=CB,ABCDCBABC=DCB,ACB=DBCQB=QC,OB=OCQ,O在BC的垂直平分线上,延长QO交BC于P,就有P为线段BC的中点;(2)如图2,EF

15、为所作理由如下:ABCDCBAB=DC,又ABC=DCB,BP=PCABPDCPAPB=DPC又DBC=ACB,BP=PCBEPCFPPE=PFPEF=PFE,APB+DPC+APD=180PEF+PFE+APD=180APB=PEFEF/BC.【考点】本题考查作图复杂作图,等腰三角形的性质,线段垂直平分线的逆定理,平行线的判定定理,全等三角形的判定与性质. 掌握相关定理并能熟练运用是解决此题的关键.2、等腰三角形,周长为11【解析】【分析】根据完全平方公式变形,再根据非负性求出a,b,c,故可求解【详解】a-3=0,b-3=0,c-5=0,、为等腰三角形,【考点】此题主要考查等腰三角形的判定

16、,解题的关键是熟知完全平方公式的特点、非负性的运用3、(1)图见解析,;(2)【解析】【分析】(1)利用轴对称的性质即可画出,再根据坐标系中所画出的三角形即可写出其顶点坐标(2)如图利用割补法即可求出的面积【详解】(1)如图,即为所求,由图可知,(2)如图取E(1,-2),F(1,-5),G(4,-5),分别连接E、G、F,由图可知四边形EGF为正方形所以,即故答案为:【考点】本题考查利用轴对称作图,利用轴对称的性质找出对称点的位置是解决问题的关键4、见解析【解析】【分析】作点C关于直线AO的对称点C,点C关于直线OB的对称点D,连接CD交AO于M,交OB于N,则路线CM-MN-NC即为所求【详解】如图所示,小明的行走路线为,此时所走的总路程为的长,总路程最短【考点】本题考查了轴对称-最短路线问题,作图-应用与设计作图,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图解题的关键是利用了轴对称的性质,两点之间线段最短的性质求解5、2【解析】【分析】延长至点,使,连接,证明推出,进而得到,从而证明,推出EF=CP,由此求出的周长=AB+AC得到答案.【详解】解:如图,延长至点,使,连接是等边三角形,在和中,在和中,的周长.【考点】此题考查全等三角形的判定及性质,等边三角形的性质,等腰三角形等边对等角的性质,题中辅助线的引出是解题的关键.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3