1、人教版八年级数学上册第十三章轴对称专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,则的长为()ABCD2、下列命题是假命题的是()A同旁内角互补,两直线平行B线段垂直平分线上的点到线段
2、两个端点的距离相等C相等的角是对顶角D角是轴对称图形3、下列图形中,是轴对称图形的是()ABCD4、如图,ABC是边长为4的等边三角形,点P在AB上,过点P作PEAC,垂足为E,延长BC至点Q,使CQPA,连接PQ交AC于点D,则DE的长为()A1B1.8C2D2.55、如图,等边的顶点,规定把等边“先沿轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,顶点C的坐标为()ABCD6、在平面直角坐标系中,点关于轴对称的点的坐标为()ABCD7、如图是A,B,C三岛的平面图,C岛在A岛的北偏东35度方向,B岛在A岛的北偏东80度方向,C岛在B岛的北偏西55度方向,则A,B,C三
3、岛组成一个( )A等腰直角三角形B等腰三角形C直角三角形D等边三角形8、如图,在ABC中,AD是BC边上的高,BAF=CAG=90,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:BG=CF;BGCF;EAF=ABC;EF=EG,其中正确的有()ABCD9、如图,在RtABC中,ABC90,分别以点A和点B为圆心,大于AB的长为半径作弧相交于点D和点E,直线DE交AC于点F,交AB于点G,连接BF,若BF3,AG2,则BC()A5B4C2D210、已知等腰三角形一腰上的高与另一腰的夹角为50,则底角的度数为()A40B70C40或140D70或20第卷(非
4、选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为_ 2、如图,在中,垂直平分,点P为直线上一动点,则周长的最小值是_3、已知AOB60,OC是AOB的平分线,点D为OC上一点,过D作直线DEOA,垂足为点E,且直线DE交OB于点F,如图所示若DE2,则DF_4、如图已知OA=a,P是射线ON上一动点,AON=60,当OP=_时,AOP为等边三角形5、如图,一个等腰直角三角尺的两个顶点恰好落在笔记本的两条横线a,
5、b上若,则_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,过的中点作,垂足分别为点、(1)求证:;(2)若,求的度数2、如图,已知AOB20,点C是AO上一点,在射线OB上求作一点F,使得CFO40(尺规作图,保留作图痕迹,并说明理由)3、如图,已知AOB,作AOB的平分线OC,将直角尺DEMN如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P(1)猜想DOP是三角形;(2)补全下面证明过程:OC平分AOBDNEM 4、(1)如图1,在ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为点D、E求证:ABDCAE;(2)如
6、图2,将(1)中的条件改为:在ABC中,ABAC,D、A、E三点都在直线m上,并且有BDAAECBAC,其中为任意锐角或钝角请问结论ABDCAE是否成立?如成立,请给出证明;若不成立,请说明理由(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为BAC平分线上的一点,且ABF和ACF均为等边三角形,连接BD,CE,若BDAAECBAC,求证:DEF是等边三角形5、如图,在ABC中,ABC=40, ACB=90,AE平分BAC交BC于点EP是边BC上的动点(不与B,C重合),连结AP,将APC沿AP翻折得APD,连结DC,记BCD=(1)如图,当P
7、与E重合时,求的度数(2)当P与E不重合时,记BAD=,探究与的数量关系-参考答案-一、单选题1、B【解析】【分析】根据等腰三角形性质求出B,求出BAC,求出DAC=C,求出AD=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案【详解】AB=AC,C=30,B=30,ABAD,AD=4cm,BD=8cm,ADB=60C=30,DAC=C=30,CD=AD=4cm,BC=BD+CD=8+4=12cm故选B.【考点】本题考查了等腰三角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应用,解此题的关键是求出BD和DC的长2、C【解析】【分析】根据平行线、垂直平分线、对顶角
8、、轴对称图形的性质,逐个分析,即可得到答案【详解】同旁内角互补,则两直线平行,故A正确;线段垂直平分线上的点到线段两个端点的距离相等,故B正确;由对顶角可得是相等的角;相等的角无法证明是对等角,故C错误;角是关于角的角平分线对称的图形,是轴对称图形,故D正确故选:C【考点】本题考查了平行线、垂直平分线、对顶角、轴对称图形、角平分线、命题的知识;解题的关键是熟练掌握平行线、垂直平分线、对顶角、轴对称图形、角平分线的性质,从而完成求解3、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”判断即可得【详解】解:根据题意,A、B、C选项中均不能找到
9、这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴4、C【解析】【分析】过作的平行线交于,通过证明,得,再由是等边三角形,即可得出【详解】解:过作的平行线交于,是等边三角形,是等边三角形,CQPA,在中和中,于,是等边三角形,故选:C【考点】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构
10、造全等三角形是解题的关键5、D【解析】【分析】先求出点C坐标,第一次变换,根据轴对称判断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第n次变化后点C坐标【详解】ABC是等边三角形AB=3-1=2点C到x轴的距离为1+,横坐标为2C(2,)由题意可得:第1次变换后点C的坐标变为(2-1,),即(1,),第2次变换后点C的坐标变为(2-2,),即(0,)第3次变换后点C的坐标变为(2-3,),即(-1,)第n次变换后点C的坐标变为(2-n,)(n为奇数)或(2-n,)(n为偶数),连
11、续经过2021次变换后,等边的顶点的坐标为(-2019,),故选:D【考点】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键6、D【解析】【分析】利用关于x轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可【详解】点关于轴对称的点的坐标为(3,-2),故选:D【考点】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键7、A【解析】【分析】先根据方位角的定义分别可求出,再根据角的和差、平行线的性质可得,从而可得,然后根据三角形的内角和定理可得,最后根据等腰直角三角形的定义即可得【详解】由方位角的定义得:由题意得
12、:由三角形的内角和定理得:是等腰直角三角形即A,B,C三岛组成一个等腰直角三角形故选:A【考点】本题考查了方位角的定义、平行线的性质、三角形的内角和定理、等腰直角三角形的定义等知识点,掌握理解方位角的概念是解题关键8、D【解析】【分析】证得CAFGAB(SAS),从而推得正确;利用CAFGAB及三角形内角和与对顶角,可判断正确;证明AFMBAD(AAS),得出FM=AD,FAM=ABD,则正确,同理ANGCDA,得出NG=AD,则FM=NG,证明FMEGNE(AAS)可得出结论正确【详解】解:BAF=CAG=90,BAF+BAC=CAG+BAC,即CAF=GAB,又AB=AF=AC=AG,CA
13、FGAB(SAS),BG=CF,故正确;FACBAG,FCA=BGA,又BC与AG所交的对顶角相等,BG与FC所交角等于GAC,即等于90,BGCF,故正确;过点F作FMAE于点M,过点G作GNAE交AE的延长线于点N,FMA=FAB=ADB=90,FAM+BAD=90,FAM+AFM=90,BAD=AFM,又AF=AB,AFMBAD(AAS),FM=AD,FAM=ABD,故正确,同理ANGCDA,NG=AD,FM=NG,FMAE,NGAE,FME=ENG=90,AEF=NEG,FMEGNE(AAS)EF=EG故正确故选:D【考点】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质
14、与互余、对顶角,三角形内角和等几何基础知识熟练掌握全等三角形的判定与性质是解题的关键9、C【解析】【分析】利用线段垂直平分线的性质得到,再证明,利用勾股定理即可解决问题【详解】解:由作图方法得垂直平分,故选:【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)方法是解题关键,同时还考查了线段垂直平分线的性质10、D【解析】【分析】分两种情况讨论:若A90;若A90;先求出顶角BAC,即可求出底角的度数【详解】解:分两种情况讨论:若A90,如图1所示:BDAC,A+ABD90,ABD5
15、0,A905040,ABAC,ABCC(18040)70;若A90,如图2所示:同可得:DAB905040,BAC18040140,ABAC,ABCC(180140)20;综上所述:等腰三角形底角的度数为70或20,故选:D【考点】本题考查了等腰三角形的性质以及余角和邻补角的定义;注意分类讨论方法的运用,避免漏解二、填空题1、(1,1),(2,2),(0,2),(2,3)【解析】【详解】试题解析:如图所示:(此时不是四边形,舍去),故答案为2、7【解析】【分析】根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可得到结论【详解】解:垂直平分,B,
16、C关于直线对称设交于点D,当P和D重合时,的值最小,最小值等于的长,周长的最小值是【考点】本题考查了勾股定理,轴对称-最短路线问题的应用,解题的关键是找出P的位置3、4【解析】【分析】过点D作DMOB,垂足为M,则DM=DE=2,在RtOEF中,利用三角形内角和定理可求出DFM=30,在RtDMF中,由30角所对的直角边等于斜边的一半可求出DF的长,此题得解【详解】过点D作DMOB,垂足为M,如图所示OC是AOB的平分线,DMDE2在RtOEF中,OEF90,EOF60,OFE30,即DFM30在RtDMF中,DMF90,DFM30,DF2DM4故答案为4【考点】本题考查了角平分线的性质、三角
17、形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30角所对的直角边等于斜边的一半,求出DF的长是解题的关键4、a【解析】【分析】根据“有一内角为60度的等腰三角形是等边三角形”进行解答【详解】AON60,当OAOPa时,AOP为等边三角形故答案是:a【考点】本题考查了等边三角形的判定等边三角形的判定方法:(1)由定义判定:三条边都相等的三角形是等边三角形(2)判定定理1:三个角都相等的三角形是等边三角形(3)判定定理2:有一个角是60的等腰三角形是等边三角形5、25【解析】【分析】求出3=25,根据平行线的性质可得出【详解】解:如图,ABC是等腰直角三角形,BAC=45,即 1=2
18、03=25 2=3=25故答案为:25【考点】此题主要考查了平行线的性质和等腰直角三角形的性质,熟练掌握蜀道难突然发觉解答此题的关键三、解答题1、(1)证明见解析;(2)=80【解析】【分析】(1)利用已知条件和等腰三角形的性质证明,根据全等三角形的性质即可证明;(2)根据三角形内角和定理得B=50,所以C=50,在ABC中利用三角形内角和定理即可求解【详解】解:(1)证明:点D为BC的中点,BD=CD,DEB=DFC=90在BDE和CDF中,(2)B=180-(BDE+BED)=50,C=50,在ABC中,=180-(B+C)=80,故=80【考点】本题考查等腰三角形的性质、全等三角形的判定
19、与性质和三角形内角和定理,熟练掌握等腰三角形的性质并灵活应用是解题的关键2、见解析【解析】【分析】先作OC的垂直平分线交OB于D,再以C点为圆心,CD为半径画弧交OB于F,则DODC,CDCF,然后根据等腰三角形的性质可判断CFO40【详解】解:如图,点F为所作理由如下:点D为OC的垂直平分线与OB的交点,DODC,DCODOC20,CDFDCO+DOC40,CFCD,CFDCDF40,即CFO40【考点】本题考查基本作图-作线段的垂直平分线、作图-作线段、线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质,熟练掌握基本作图的步骤和相关知识的性质,掌握转化的思想方法是解答的关键3、等腰,
20、DOP,BOP,DPO,BOP,DOP,DPO,OD,PD,见解析【解析】【分析】(1)三角形的种类有多种,从边和角的关系上看常见的有:等腰三角形、等边三角形、直角三角形、观察此三角形即可大体猜想出三角形的类型;(2)根据角平分线的性质和平行线的性质,求得DOPDPO,即可判断三角形的形状【详解】解:(1)我们猜想DOP是等腰三角形;(2)补全下面证明过程:OC平分AOB,DOPBOP,DNEM,DPOBOP,DOPDPO,ODPD故答案为:等腰,DOP,BOP,DPO,BOP,DOP,DPO,OD,PD【考点】本题考查了角平分线的性质和平行线的性质及等腰三角形,解决本题的关键是掌握平行线的性
21、质定理,找到相等的角4、(1)见详解;(2)成立,理由见详解;(3)见详解【解析】【分析】(1)根据直线,直线得,而,根据等角的余角相等得,然后根据“”可判断;(2)利用,则,得出,然后问题可求证;(3)由题意易得,由(1)(2)易证,则有,然后可得,进而可证,最后问题可得证【详解】(1)证明:直线,直线,在和中,;解:(2)成立,理由如下:,在和中,;(3)证明:ABF和ACF均为等边三角形,BDAAECBAC=120,(SAS),DFE是等边三角形【考点】本题主要考查全等三角形的判定与性质及等边三角形的性质与判定,熟练掌握全等三角形的判定与性质及等边三角形的性质与判定是解题的关键5、 (1
22、)25(2)当点P在线段BE上时,250;当点P在线段CE上时,250【解析】【分析】(1)由B40,ACB90,得BAC50,根据AE平分BAC,P与E重合,可得ACD,从而ACBACD;(2)分两种情况:当点P在线段BE上时,可得ADCACD90,根据ADCBADBBCD,即可得250;当点P在线段CE上时,延长AD交BC于点F,由ADCACD90,ADCAFCABCBAD+可得9040,即250(1)解:B40,ACB90,BAC50,AE平分BAC,EACBAC25,P与E重合,D在AB边上,AECD,ACD65,ACBACD25;(2)如图1,当点P在线段BE上时,ADCACD90,ADCBADBBCD,9040,250;如图2,当点P在线段CE上时,延长AD交BC于点F,ADCACD90,ADCAFCABCBAD+40,9040,250【考点】本题考查三角形综合应用,涉及轴对称变换,三角形外角等于不相邻的两个内角的和的应用,解题的关键是掌握轴对称的性质,能熟练运用三角形外角的性质