收藏 分享(赏)

人教版八年级数学上册第十三章轴对称专题练习试题.docx

上传人:高**** 文档编号:1775049 上传时间:2024-06-12 格式:DOCX 页数:26 大小:802.44KB
下载 相关 举报
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第1页
第1页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第2页
第2页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第3页
第3页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第4页
第4页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第5页
第5页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第6页
第6页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第7页
第7页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第8页
第8页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第9页
第9页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第10页
第10页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第11页
第11页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第12页
第12页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第13页
第13页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第14页
第14页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第15页
第15页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第16页
第16页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第17页
第17页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第18页
第18页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第19页
第19页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第20页
第20页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第21页
第21页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第22页
第22页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第23页
第23页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第24页
第24页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第25页
第25页 / 共26页
人教版八年级数学上册第十三章轴对称专题练习试题.docx_第26页
第26页 / 共26页
亲,该文档总共26页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版八年级数学上册第十三章轴对称专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,的垂直平分线交于点,若,则的度数是()A25B20C30D152、下列命题是假命题的是()A同旁内角互补,两

2、直线平行B线段垂直平分线上的点到线段两个端点的距离相等C相等的角是对顶角D角是轴对称图形3、北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是()ABCD4、自新冠肺炎疫情发生以来,全国人民共同抗疫下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()ABCD5、等腰三角形一腰上的高与另一腰的夹角为,则顶角的度数为()ABC或D或6、已知等腰三角形一腰上的高与另一腰的夹角为50,则底角的度数为()A40B70C40或140D70或207、如图,ABC是边长为4的等边三角形,点P在AB上,过点P作PEAC,垂足为E,延长BC至点Q,使CQPA,连接P

3、Q交AC于点D,则DE的长为()A1B1.8C2D2.58、如图,ABC中,ABAC,DE是AB的垂直平分线交AB于点E,交AC于点D,连接BD;若BDAC,则CBD的度数是()A22B22.5C24D24.59、下列命题中,属于假命题的是()A边长相等的两个等边三角形全等B斜边相等的两个等腰直角三角形全等C周长相等的两个三角形全等D底边和顶角对应相等的两个等腰三角形全等10、如图,等边的顶点,规定把等边“先沿轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,顶点C的坐标为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中

4、,点M(a,b)与点N(3,1)关于x轴对称,则的值是_2、如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置)测得的相关数据为:米,则_米3、平行四边形、菱形、圆、线段、正七边形、等腰三角形、五角星中,共有_个中心对称图形,共有_个轴对称图形4、如图,已知 O 为ABC 三边垂直平分线的交点,且A50,则BOC 的度数为_度 5、如图,在和中,以点为顶点作,两边分别交,于点,连接,则的周长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在四边形中,分别是,上的点,连接,(1)如图,求证:;(2)如图,当周长最小时,求的度数;(3)如图,若四边形为正方形

5、,点、分别在边、上,且,若,请求出线段的长度2、如图,将一长方形纸片ABCD沿着EF折叠,已知AFBE,DFCE,CE交AF于点G,过点G作GHEF,交线段BE于点H(1)判断CGH与DFE是否相等,并说明理由;(2)判断GH是否平分AGE,并说明理由;若DFA54,求HGE的度数3、如图,AD是ABC的中线,点E在AD上,且BEAC,求证:BEDCAD4、如图,在正方形网格上有一个(1)画出关于直线的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求的面积5、如图,在中,的垂直平分线分别交、于点D、E,的垂直平分线分别交、于点F、G求的周长-参考答案-一、单选题1、D【解析】【

6、分析】根据等要三角形的性质得到ABC,再根据垂直平分线的性质求出ABD,从而可得结果【详解】解:AB=AC,C=ABC=65,A=180-652=50,MN垂直平分AB,AD=BD,A=ABD=50,DBC=ABC-ABD=15,故选D【考点】本题考查了等腰三角形的性质和垂直平分线的性质,解题的关键是掌握相应的性质定理2、C【解析】【分析】根据平行线、垂直平分线、对顶角、轴对称图形的性质,逐个分析,即可得到答案【详解】同旁内角互补,则两直线平行,故A正确;线段垂直平分线上的点到线段两个端点的距离相等,故B正确;由对顶角可得是相等的角;相等的角无法证明是对等角,故C错误;角是关于角的角平分线对称

7、的图形,是轴对称图形,故D正确故选:C【考点】本题考查了平行线、垂直平分线、对顶角、轴对称图形、角平分线、命题的知识;解题的关键是熟练掌握平行线、垂直平分线、对顶角、轴对称图形、角平分线的性质,从而完成求解3、D【解析】【分析】根据轴对称图形的定义判断即可【详解】A,B,C都不是轴对称图形,故不符合题意;D是轴对称图形,故选D.【考点】本题考查了轴对称图形的定义,准确理解定义是解题的关键4、D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可【详解】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、

8、不是轴对称图形,不合题意;D、是轴对称图形,符合题意故选:D【考点】本题考查了轴对称图形,熟练掌握轴对称图形的定义是解题的关键5、D【解析】【分析】分等腰三角形为锐角三角形和钝角三角形两种情况,然后分别根据直角三角形两锐角互余即可得【详解】依题意,分以下两种情况:(1)如图1,等腰为锐角三角形,顶角为,(2)如图2,等腰为钝角三角形,顶角为,综上,顶角的度数为或故选:D【考点】本题考查了等腰三角形的定义、直角三角形两锐角互余等知识点,依据题意,正确分两种情况讨论是解题关键6、D【解析】【分析】分两种情况讨论:若A90;若A90;先求出顶角BAC,即可求出底角的度数【详解】解:分两种情况讨论:若

9、A90,如图1所示:BDAC,A+ABD90,ABD50,A905040,ABAC,ABCC(18040)70;若A90,如图2所示:同可得:DAB905040,BAC18040140,ABAC,ABCC(180140)20;综上所述:等腰三角形底角的度数为70或20,故选:D【考点】本题考查了等腰三角形的性质以及余角和邻补角的定义;注意分类讨论方法的运用,避免漏解7、C【解析】【分析】过作的平行线交于,通过证明,得,再由是等边三角形,即可得出【详解】解:过作的平行线交于,是等边三角形,是等边三角形,CQPA,在中和中,于,是等边三角形,故选:C【考点】本题主要考查了等边三角形的判定与性质,全

10、等三角形的判定与性质,作辅助线构造全等三角形是解题的关键8、B【解析】【分析】先利用线段垂直平分线的性质、等腰三角形的性质求得A、ABD、ABC,最后利用三角形内角和定理求解即可【详解】解:BDAC,DE是AB的垂直平分线,ADB=90,DA=DB,A=ABD=45,AB=AC,ABC=ACB=67.5,CBD=ABC-ABD=67.5-45=22.5,故选B【考点】本题主要考查了线段垂直平分线、等腰三角形的性质、三角形内角和定理等知识点,明确题意、灵活应用相关知识点成为解答本题的关键9、C【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,等边三角形的性质,直角三角形的性质,逐一判断

11、选项,即可得到答案【详解】解:A、边长相等的两个等边三角形全等,是真命题,故A不符合题意;B、斜边相等的两个等腰直角三角形全等,是真命题,故B不符合题意;C、周长相等的两个三角形不一定全等,原命题是假命题,故C符合题意;D、底边和顶角对应相等的两个等腰三角形全等,是真命题,故D不符合题意故选:C【考点】本题考查了命题与定理,牢记有关的性质、定义及定理是解决此类题目的关键10、D【解析】【分析】先求出点C坐标,第一次变换,根据轴对称判断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第

12、n次变化后点C坐标【详解】ABC是等边三角形AB=3-1=2点C到x轴的距离为1+,横坐标为2C(2,)由题意可得:第1次变换后点C的坐标变为(2-1,),即(1,),第2次变换后点C的坐标变为(2-2,),即(0,)第3次变换后点C的坐标变为(2-3,),即(-1,)第n次变换后点C的坐标变为(2-n,)(n为奇数)或(2-n,)(n为偶数),连续经过2021次变换后,等边的顶点的坐标为(-2019,),故选:D【考点】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键二、填空题1、1【解析】【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得

13、a、b的值即可求得答案【详解】解:在直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数,点M(a,b)与点N(3,1)关于x轴对称,a3,b1,1,故答案为:1【考点】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解题的关键2、48【解析】【分析】先说明ABC是等边三角形,然后根据等边三角形的性质即可解答【详解】解:BAC=180-60-60=60BAC=ABC=BCA=60ABC是等边三角形AC=BC=48米故答案为48【考点】本题考查了等边三角形的判定和性质,证得ABC是等边三角形是解答本题的关键3、 4 6【解析】【分析】根据轴对称图形与中心对称

14、图形的概念,分别分析平行四边形、菱形、圆、线段、正七边形、等腰三角形、五角星是否符合即可【详解】解:中心对称图形有:平行四边形、菱形、圆、线段,共4个;轴对称图形有:菱形、圆、线段、正七边形、等腰三角形、五角星,共6个故答案为:4,6【考点】考查了轴对称图形和中心对称图形的概念,能够正确判断特殊图形的对称性轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180后两部分重合4、100【解析】【分析】连接AO延长交BC于D,根据线段垂直平分线的性质可得OB=OA=OC,再根据等腰三角形的等边对等角和三角形的外角性质可得BOC=2A,即可求解【详解】解:连接A

15、O延长交BC于D,O 为ABC 三边垂直平分线的交点,OB=OA=OC,OBA=OAB,OCA=OAC,BOD=OBA+OAB=2OAB,COD=OCA+OAC=2OAC,BOC=BOD+COD=2OAB+2OAC=2BAC,BAC=50,BOC=1005、4【解析】【分析】延长AC至E,使CE=BM,连接DE证明BDMCDE(SAS),得出MD=ED,MDB=EDC,证明MDNEDN(SAS),得出MN=EN=CN+CE,进而得出答案【详解】延长AC至E,使CE=BM,连接DEBD=CD,且BDC=140,DBC=DCB=20,A=40,AB=AC=2,ABC=ACB=70,MBD=ABC+

16、DBC=90,同理可得NCD=90,ECD=NCD=MBD=90,在BDM和CDE中, BDMCDE(SAS),MD=ED,MDB=EDC,MDE=BDC=140,MDN=70,EDN=70=MDN,在MDN和EDN中,MDNEDN(SAS),MN=EN=CN+CE,AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4【考点】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;构造辅助线证明三角形全等是解题的关键三、解答题1、(1)见解析;(2);(3)【解析】【分析】(1)延长到点G,使,连接,首先证明,则有,然后利用角度之间的关

17、系得出,进而可证明,则,则结论可证;(2)分别作点A关于和的对称点,连接,交于点,交于点,根据轴对称的性质有,当点、在同一条直线上时,即为周长的最小值,然后利用求解即可;(3)旋转至的位置,首先证明,则有,最后利用求解即可【详解】(1)证明:如解图,延长到点,使,连接,在和中,在和中,;(2)解:如解图,分别作点A关于和的对称点,连接,交于点,交于点由对称的性质可得,此时的周长为当点、在同一条直线上时,即为周长的最小值,;(3)解:如解图,旋转至的位置,在和中,【考点】本题主要考查全等三角形的判定及性质,轴对称的性质,掌握全等三角形的判定及性质是解题的关键2、(1)CGHDFE,理由见解析;(

18、2)GH平分AGE;理由见解析;HGE63【解析】【分析】(1)根据平行线的性质得到AGCAFD,AGHAFE,根据角的和差关系即可得到CGHDFE;(2)根据平行线的性质得到AGHAFE,HGEGEF,根据折叠的性质可得1GFE,即可得出根据角平分线的定义即可得到结论;根据平行线的性质可得AGC=DFG,由可知AGHEGH,根据平角的定义即可得答案【详解】(1)CGHDFE,理由如下:四边形ABCD是矩形,DF/CE,AGCAFD,GHEF,AGHAFE,CGHAGC+AGH,DFEAFD+AFE,CGHDFE;(2)GH平分AGE;理由如下:如图,GHEF,AGHAFE,HGEGEF,CE

19、DF,1GEF,将一长方形纸片ABCD沿着EF折叠,1GFE,GFEGEF,AGHEGH,GH平分AGE;CE/DF,DFG54,AGC=DFG=54,AGHEGH,HGE(180-DFG)=63【考点】本题主要考查折叠的性质及平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握相关性质是解题关键3、见解析【解析】【分析】延长AD到E,使FDAD,连接BF,易证ADCFDB,得到BFAC,FCAD,而BEAC,所以BFBE,得BEDF,等量代换即可【详解】证明:延长AD到E,使FDAD,连接BF在ADC和FDB中, (SAS)BFAC,FCADBEA

20、C,BFBEBEDF,BEDCAD【考点】本题考查了全等三角形的判定与性质,等腰三角形的性质,倍长中线构造全等三角形是解题的关键4、(1)见解析;(2)8.5【解析】【分析】(1)先利用网格确定ABC关于直线MN对称的点,再顺次连接各点即可得到ABC关于直线MN的对称图形;(2)利用矩形面积减去周围多余三角形面积即可【详解】解:(1)如图所示:DEF即为所求; (2)ABC的面积:45- 41- 53- 41=20-2-7.5-2=8.5【考点】此题主要考查了作图-轴对称变换,关键是确定组成图形的关键点的对称点位置5、10【解析】【分析】根据线段垂直平分线的性质可得,据此即可求解【详解】解:是的垂直平分线,是的垂直平分线,的周长【考点】此题主要考查了线段垂直平分线的性质等几何知识,线段垂直平分线上的点到线段两端点的距离相等

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3