ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:220KB ,
资源ID:177470      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-177470-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(山东省临清市高中数学全套学案必修2:3.2.2 直线的两点式方程.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

山东省临清市高中数学全套学案必修2:3.2.2 直线的两点式方程.doc

1、高考资源网() 您身边的高考专家3.2.2 直线的两点式方程导学案课前预习学案一、 预习目标通过预习同学们知道点斜式和两点式之间有很密切的联系,用点斜式来解决两点确定一条直线这个问题。如何得到的呢?特殊化后又得到另一种形式,截距式。明确他们的适用范围?二、 预习内容 思考1:由一个点和斜率可以确定一条直线,还有别的条件可以确定一条直线吗?问题: 已知直线l过A(3,-5)和B(-2,5),求直线l的方程解:上述直线方程在x轴,y轴上的 截距分别是什么?讨论回答三、提出疑惑课内探究学案一、学习目标(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。学习重点

2、:直线方程两点式。学习难点:两点式推导过程的理解。二、学习过程(自主学习、合作探究、精讲点拨、有效训练)思考2:设直线l经过两点P1(x1,y1),P2(x2,y2),其中x1x2,y1y2,则直线l斜率是什么?结合点斜式直线l的方程如何?讨论:1、两点式适用范围是什么?答: 2、若点中有,或,此时这两点的直线方程是什么?例1:求过两点的直线的两点式方程,并转化成点斜式.练习:教材P97面1题例2:已知直线与轴的交点为A(a,0),与轴的交点为B(0,b),其中a0,b0求的方程解析:说明(1)直线与x轴的交点(a,0)的横坐标a叫做直线在x轴的截距,此时直线在y轴的截距是b; 解:变式:1.

3、求过点P(2, 3),并且在两坐标轴上的截距相等的直线的方程。上题中改为求截距的绝对值相等的直线方程,结果如何?2.求过点P(2, 3),并且在x轴上的截距是在y轴上的截距2倍的直线的方程。例3:已知三角形的三个顶点A(5,0),B(3,3),C(0,2)求BC所在直线的方程,以及该边上中线所在直线的方程。反思总结直线的两点式是怎么来的,它的适用范围是什么?经过特殊化后得到截距式,它的几何意义是什么。什么是截距。当堂检测1.2.求经过点P(-5,4),且在两坐标轴上的截距相等的直线方程.3.已知直线l经过点P(1,2),并且点A(2,3)和点 B(4,-5)到直线l的距离相等,求直线l的方程.4过(1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?课后练习与提高1、已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点。(1)求AB边所在的直线方程;(2)求中线AM的长(3)求AB边的高所在直线方程。w.w.w.k.s.5.u.c.o.m- 6 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3