ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:677.50KB ,
资源ID:177432      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-177432-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(山东省临清市高中数学全套学案必修5:2.4.1 等比数列.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

山东省临清市高中数学全套学案必修5:2.4.1 等比数列.doc

1、高考资源网() 您身边的高考专家课内探究学案(一 )学习目标1.明确等比数列的定义;2.掌握等比数列的通项公式,会解决知道,n中的三个,求另一个的问题教学重点1.等比数列概念的理解与掌握;2.等比数列的通项公式的推导及应用教学难点等差数列等比的理解、把握和应用(二)学习过程1、自主学习、合作探究1.等差数列的证明:();(、),;证明为常数(对于适用);证明。2.当引入公比辅助解题或作为参数时,注意考虑是否需要对和进行分类讨论。3.证明数列是等比数列、不是等比数列,讨论数列是否等比数列,求解含参等比数列中的参数这四类问题同源。4.注意巧用等比数列的主要性质,特别是()和()。5. 三数成等比数

2、列,一般可设为、;四数成等比数列,一般可设为、;五数成等比数列,一般可设为、。2、精讲点拨三、典型例题例1 数列为各项均为正数的等比数列,它的前项和为80,且前项中数值最大的项为54,它的前项和为6560,求首项和公比。解:若,则应有,与题意不符合,故。依题意有:得即得或(舍去),。由知,数列的前项中最大,得。将代入(1)得 (3),由得,即 (4),联立(3)(4)解方程组得。例2 (1)已知为等比数列,求的通项公式。(2)记等比数列的前项和为,已知,求和公比的值。解:(1)设等比数列的公比为(),则,即也即,解此关于的一元方程得或。,或。(2)在等比数列中,有,又,联立解得或,由此知,而,

3、从而解得或。例3 已知数列,其中,且数列(为常数)为等比数列,求常数。解:为等比数列,那么,将代入并整理得,解之得或。例4 设、是公比不相等的两个等比数列,证明数列不是等比数列。解:设、分别是公比为、()的两个等比数列,要证明不是等比数列,我们只需证即可。事实上,又、,数列不是等比数列。3、反思总结 4当堂检测1.已知等比数列中,则其前3项的和的取值范围是( ) 2.已知是等比数列,则 3.若实数、成等比数列,则函数与轴的交点的个数为( ) 无法确定4. 在数列中,且是公比为()的等比数列,该数列满足(),则公比的取值范围是( ) 5.设数列满足(,),且,则_。6.设为公比的等比数列,若和是

4、方程的两根,则_。7.设是由正数组成的等比数列,公比,且,则_。8.设两个方程、的四个根组成以2为公比的等比数列,则_。9.设数列为等比数列,已知,。(1)求等比数列的首项和公比;(2)求数列的通项公式。10.设数列的前项和为,已知(1)证明:当时,是等比数列;(2)求的通项公式。11.已知数列和满足:,其中为实数,为正整数。(1)对任意实数,证明数列不是等比数列;(2)试判断数列是否为等比数列,并证明你的结论;(3)设,为数列的前项和。是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由。【当堂检测】1. 解析:设数列的公比为,那么,函数()的值域为,从而求得的取值

5、范围。2. 解析:等比数列的公比,显然数列也是等比数列,其首项为,公比,。3. 解析:、成等比数列,二次函数的判别式,从而函数与轴无交点。4. ,而,即,解得,而,故公比的取值范围为。5. 解析:,即,也即,从而数列是公比为的等比数列。6.解析:的两根分别为和,从而、,。7.解析:,。8.解析:设该等比数列为、, ,从而、,。9.解:(1)对于等式,令得;令得,。(2),则 得 得:。10.解:(1)证明:由题意知,且,两式相减得,即 当时,由知,于是又,所以是首项为1,公比为2的等比数列。(2)当时,由(1)知,即; 当时,由得11.解:(1)证明:假设存在一个实数,使是等比数列,则有,即,矛盾。所以不是等比数列.(2)解: 。又,所以当时,这时不是等比数列;当时,由上可知,。故当时,数列是以为首项,为公比的等比数列。(3)由(2)知,当时,不满足题目要求。,故知,可得,要使对任意正整数成立,即,得 令,则当为正奇数时,;当为正偶数时,。所以的最大值为,最小值为。于是,由式得。当时,由知,不存在实数满足题目要求;当时,存在实数,使得对任意正整数,都有,且的取值范围是。w.w.w.k.s.5.u.c.o.m- 10 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3