ImageVerifierCode 换一换
格式:DOCX , 页数:34 ,大小:936.45KB ,
资源ID:1760905      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1760905-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教版九年级数学上册第二十三章旋转定向测评练习题(解析版).docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

人教版九年级数学上册第二十三章旋转定向测评练习题(解析版).docx

1、人教版九年级数学上册第二十三章旋转定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将ABC绕点A逆时针旋转70得到ADE,点B、C的对应点分别为D、E,当点B、C、D、P在同一条直线上时,则

2、PDE的度数为()A55B70C80D1102、如图,将正方形绕点A顺时针旋转,得到正方形,的延长线交于点H,则的大小为()ABCD3、如图,由个小正方形组成的田字格,的顶点都是小正方形的顶点,在田字格上能画出与成轴对称,且顶点都在小正方形顶点上的三角形的个数共有( )A2个B3个C4个D5个4、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A30B90C120D1805、如图,点A的坐标为,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60得到线段AC若点C的坐标为,则m的值为()ABCD6、在下列图形中,既是轴对称图形,又是中心对称图形的是(

3、)A等边三角形B直角三角形C正五边形D矩形7、如图,中,若将绕点逆时针旋转得到,连接,则在点运动过程中,线段的最小值为()A1BCD28、下列运动形式属于旋转的是()A在空中上升的氢气球B飞驰的火车C时钟上钟摆的摆动D运动员掷出的标枪9、如图,在ABC中,ACB90,ACBC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE当ADBF时,BEF的度数是()A45B60C62.5D67.510、如图,在中,将绕点C逆时针旋转得到,点A,B的对应点分别为D,E,连接当点A,D,E在同一条直线上时,下列结论一定正确的是

4、()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,将绕点逆时针旋转得到,连接,则的长为_.2、如图,把ABC绕点C顺时针旋转25,得到ABC, AB交AC于点D,若ADC90,则A度数为_3、如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90,得到矩形EFCG,连接AE,取AE的中点H,连接DH,则_4、将图1剪成若干小块,再图2中进行拼接平移后能够得到、中的_5、如图,ABC和DEC关于点C成中心对称,若AC1,AB2,BAC90,则AE的长是_三、解答题(5小题,每小题10分,共计50分)1、在RtABC中,ABC9

5、0,ACB30,将ABC绕点C顺时针旋转一定的角度得到DEC,点A、B的对应点分别是D、E(1)当点E恰好在AC上时,如图1,求ADE的大小;(2)若60时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形2、在RtABC中,BAC90,ABAC,动点D在直线BC上(不与点B,C重合),连接AD,把AD绕点A逆时针旋转90得到AE,连接DE,F,G分别是DE,CD的中点,连接FG【特例感知】(1)如图1,当点D是BC的中点时,FG与BD的数量关系是,FG与直线BC的位置关系是;【猜想论证】(2)当点D在线段BC上且不是BC的中点时,(1)中的结论是否仍然成立?请在图2中补全图形;若成

6、立,请给出证明;若不成立,请说明理由【拓展应用】(3)若ABAC=,其他条件不变,连接BF、CF当ACF是等边三角形时,请直接写出BDF的面积3、在RtABC中,ABC90,A,O为AC的中点,将点O沿BC翻折得到点,将ABC绕点顺时针旋转,使点B与C重合,旋转后得到ECF(1)如图1,旋转角为 (用含的式子表示)(2)如图2,连BE,BF,点M为BE的中点,连接OM,BFC的度数为 (用含的式子表示)试探究OM与BF之间的关系(3)如图3,若30,请直接写出的值为 4、如图,点,分别在正方形的边,上,且,把绕点顺时针旋转得到(1)求证:(2)若,求正方形的边长5、如图,AOB中,OA=OB=

7、6,将AOB绕点O逆时针旋转得到CODOC与AB交于点G,CD分别交OB、AB于点E、F(1)A与D的数量关系是:A_D;(2)求证:AOGDOE;(3)当A,O,D三点共线时,恰好OBCD,求此时CD的长-参考答案-一、单选题1、B【解析】【分析】首先根据旋转的性质可得,AB=AD,据此即可求得,据此即可求得【详解】解:将ABC绕点A逆时针旋转70得到ADE,AB=AD,又点B、C、D、P在同一条直线上,故选:B【考点】本题考查了旋转的性质,等边对等角的应用,三角形内角和定理,熟练掌握和运用旋转的性质是解决本题的关键2、B【解析】【分析】根据旋转的性质,求得BAE=38,根据正方形的性质,求

8、得DBA=45,ABH=135,利用四边形的内角和定理计算即可【详解】根据旋转的性质,得BAE=38,四边形ABCD是正方形,DBA=45,ABH=135,四边形AEFG是正方形,E=90,DHE=360-90-38-135=97,故选B【考点】本题考查了旋转的性质,正方形的性质,四边形的内角和定理,熟练掌握正方形的性质,旋转的性质是解题的关键3、C【解析】【分析】因为顶点都在小正方形上,故可分别以大正方形的两条对角线AB、EF及MN、CH为对称轴进行寻找【详解】分别以大正方形的两条对角线AB、EF及MN、CH为对称轴,作轴对称图形:则ABM、ANB、EHF、EFC都是符合题意的三角形.故选:

9、C.【考点】考查了利用轴对称涉及图案的知识,关键是根据要求顶点在格点上寻找对称轴,有一定难度,不要漏解.4、C【解析】【分析】根据图形的对称性,用360除以3计算即可得解【详解】解:3603=120,旋转的角度是120的整数倍,旋转的角度至少是120故选C【考点】本题考查了旋转对称图形,仔细观察图形求出旋转角是120的整数倍是解题的关键5、C【解析】【分析】过C作CDx轴于D,CEy轴于E,根据将线段AB绕点A按逆时针方向旋转60得到线段AC,可得ABC是等边三角形,又A(0,2),C(m,3),即得,可得,从而,即可解得【详解】解:过C作CDx轴于D,CEy轴于E,如图所示:CDx轴,CEy

10、轴,CDO=CEO=DOE90,四边形EODC是矩形,将线段AB绕点A按逆时针方向旋转60得到线段AC,ABAC,BAC60,ABC是等边三角形,ABACBC,A(0,2),C(m,3),CEmOD,CD3,OA2,AEOEOACDOA1,在RtBCD中,在RtAOB中,OBBDODm,化简变形得:3m422m2250,解得:或(舍去),故C正确故选:C【考点】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度6、D【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得【详解】解:A等边三角形是轴对称图形,不是中心对称图形,不符合题意;B直角

11、三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C正五边形是轴对称图形,不是中心对称图形,不符合题意;D矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D【考点】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形7、B【解析】【分析】在AB上截取AQ=AO=1,利用SAS证明AQDAOE,推出QD=OE,当QDBC时,QD的值最小,即线段OE有最小值,利用勾股定理即可求解【详解】如图,在AB上截取AQ

12、=AO=1,连接DQ,将AD绕A点逆时针旋转90得到AE,BAC=DAE=90,BAC-DAC =DAE-DAC,即BAD=CAE,在AQD和AOE中,AQDAOE(SAS),QD=OE,D点在线段BC上运动,当QDBC时,QD的值最小,即线段OE有最小值,ABC是等腰直角三角形,B=45,QDBC,QBD是等腰直角三角形,AB=AC=3,AO=1,QB=2,由勾股定理得QD=QB=,线段OE有最小值为,故选:B【考点】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键8、C【解析】【分析】根据旋转的定义逐一进行判断即可得

13、到正确的结论.【详解】解:在空气中上升的氢气球,飞驰的火车,运动员掷出标枪属于平移现象,时钟上钟摆的摆动属于旋转现象.故选:C.【考点】本题主要考查关于旋转的知识,题目比较简单,属于基础题目,大部分学生能够正确完成,熟练掌握旋转的定义是解决本题的关键.9、D【解析】【分析】根据旋转的性质可得CDCE和DCE90,结合ACB90,ACBC,可证ACDBCE,依据全等三角形的性质即可得到CBEA45,再由ADBF可得等腰BEF,则可计算出BEF的度数【详解】解:由旋转性质可得: CDCE,DCE90ACB90,ACBC,A45ACBDCBDCEDCB即ACDBCEACDBCECBEA45ADBF,

14、BEBFBEFBFE 67.5故选:D【考点】本题考查了旋转的性质、全等三角形的判定与性质以及等腰三角形的性质,解题的关键是熟练运用旋转的性质找出相等的线段和角,并能准确判定三角形全等,从而利用全等三角形性质解决相应的问题10、D【解析】【分析】由旋转可知,即可求出,由于,则可判断,即A选项错误;由旋转可知,由于,即推出,即B选项错误;由三角形三边关系可知,即可推出,即C选项错误;由旋转可知,再由,即可证明为等边三角形,即推出即可求出,即证明,即D选项正确;【详解】由旋转可知,点A,D,E在同一条直线上,故A选项错误,不符合题意;由旋转可知,为钝角,故B选项错误,不符合题意;,故C选项错误,不

15、符合题意;由旋转可知,为等边三角形,故D选项正确,符合题意;故选D【考点】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定利用数形结合的思想是解答本题的关键二、填空题1、5【解析】【分析】由旋转的性质可得ACAC13,CAC160,由勾股定理可求解【详解】将ABC绕点A逆时针旋转60得到AB1C1,ACAC13,CAC160,BAC190,BC15,故答案为:5【考点】本题考查了旋转的性质,勾股定理,熟练旋转的性质是本题的关键2、65【解析】【分析】根据旋转的性质,可得知,从而求得的度数,又因为的对应角是,即可求出的度数【详解】绕着点时针旋转,得到,的对应角是故答案为

16、:【考点】此题考查了旋转的性质,解题的关键是正确确定对应角3、【解析】【分析】根据题意构造并证明,通过全等得到,再结合矩形的性质、旋转的性质,及可求解;【详解】如图,延长DH交EF于点k,H是的中点又则故答案为:【考点】本题主要考查了矩形的性质、三角形的全等证明,掌握相关知识并结合旋转的性质正确构造全等三角形是解题的关键4、#【解析】【详解】解:根据图形1可得剪成若干小块,再图2中进行拼接平移后能够得到、,不能拼成,故答案为:5、2【解析】【分析】根据中心对称的性质AD=DE及D=90,由勾股定理即可求得AE的长【详解】DEC与ABC关于点C成中心对称,ABCDEC,ABDE2,ACDC1,D

17、BAC90,AD2,D90,AE,故答案为【考点】本题考查了中心对称的性质,勾股定理等知识,关键中心对称性质的应用三、解答题1、(1)ADE15;(2)见解析【解析】【分析】(1)根据旋转的性质可得CACD,ECDBCA30,DECABC90,根据等边对等角即可求出CADCDA75,再根据直角三角形的两个锐角互余即可得出结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得BFAC,然后根据30所对的直角边是斜边的一半即可求出ABAC,从而得出 BFAB,然后证出ACD和BCE为等边三角形,再利用HL证出CFDABC,证出DFBE,即可证出结论【详解】(1)解:ABC绕点C顺时针旋转得到DE

18、C,点E恰好在AC上,CACD,ECDBCA30,DECABC90,CADCDA(18030)75,ADE90CAD15;(2)证明:如图2,连接AD点F是边AC中点,BFAF=CFAC,ACB30,ABAC,BF=CFAB,ABC绕点C顺时针旋转60得到DEC,BCEACD60,CBCE,DEAB,DC=ACDEBF,ACD和BCE为等边三角形,BECB,点F为ACD的边AC的中点,DFAC,在RtCFD和RtABC中RtCFDRtABC,DFBC,DFBE,而BFDE,四边形BEDF是平行四边形【考点】此题考查的是旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等

19、三角形的判定及性质和平行四边形的判定,掌握旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定是解决此题的关键2、(1)FG=BD,FGBC;(2)补全图形见解析;结论仍然成立,理由见解析;(3)BDF的面积为或【解析】【分析】(1)根据等腰直角三角形的性质以及中位线定理可得结果;(2)根据题意画出图形即可;根据旋转的性质证明ABDACE,结合中位线定理证明结论;(3)分两种情况进行讨论:当点D在点B的左侧时;当点D在点C的右侧时,分别画出图形结合等边三角形的性质解答【详解】(1)BAC90,ABAC,点D是BC的中点,ADBC,AD

20、BDCD,ABCACB45,F,G分别是DE,CD的中点,FGAD,FGAD,FGBD,FGBC,故答案为:FGBD,FGBC;(2)补全图形如图所示;结论仍然成立,理由如下:如图2,连接CE,把AD绕点A逆时针旋转90得到AE,BACDAE90,ADAE,BADCAE,又ABAC,ABDACE(SAS),CEBD,ACEBACB45,DCE90,F,G分别是DE,CD的中点,FGCEBD,FGCE,FGBC;(3)当点D在点B的左侧时,如图31中,作AMBC于M,连接FG,BAC90,ABAC,AMBC,BC2,BMCMAMBC1,BAMCAM45,ADAE,DAE90,点F是DE中点,EA

21、FCAM45,AFFDEF,AFC是等边三角形,AFACFC,FACAFCACF60,CAE15BAD,ADMABCBAD30,DMAM,BDDMBM,由(2)的结论可得:FGBC,FGBD,BDF的面积;当点D在点C的右侧时,如图32中,作AMBC于M,连接FG,BAC90,ABAC,AMBC,BC2,BMCMAMBC1,BAMCAM45,ADAE,DAE90,点F是DE中点,EAFCAM45,AFFDEF,DAF45,AFC是等边三角形,AFACFC,FACAFCACF60,CADCAFDAF15,ADMACBCAD30,DMAM,BDDM+BM1,由(2)的结论可得:FGBC,FGBD,

22、BDF的面积综上所述:BDF的面积为或【考点】本题考查了等腰三角形的性质,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,熟练掌握以上性质定理是解本题的关键3、(1);(2);(3)【解析】【分析】(1)连接OB,由,O为BC的中点,得到,则,再由旋转的性质可得,由此求解即可;(2)连接,由(1)可知(因为也是旋转角),由旋转的性质可得,则,可以得到,再由可以得到,由此即可求解;连接OB,OE延长OM交EF于N,由得,由旋转的性质可得,然后证明,得到,则,再证明OBMNEM得到,从而推出MN为BFE的中位线,得到,则;(3)连接与BF交于H,由,可得,由含30度角的直角三角形的性质可以

23、得到,再由勾股定理可以得到,由此即可得到答案【详解】解:(1)如图所示,连接OB,O为BC的中点,将点O沿BC翻折得到点,由旋转的性质可得,旋转角为,故答案为:;(2)如图所示,连接,由(1)可知(因为也是旋转角),由旋转的性质可得,故答案为:;如图所示,连接OB,OE延长OM交EF于N,由得,由旋转的性质可得,M为BE的中点,在OBM和NEM中,OBMNEM(SAS),N为EF的中点,MN为BFE的中位线,;(3)如图所示,连接与BF交于H,故答案为:【考点】本题主要考查了旋转的性质,等腰三角形的性质与判定,直角三角形斜边上的中线,三角形中位线定理,含30度角的直角三角形的性质,勾股定理,平

24、行线的性质与判定等等,解题的关键在于能够熟练掌握旋转的性质4、(1)证明见解析;(2)正方形的边长为6【解析】【分析】(1)先根据旋转的性质可得,再根据正方形的性质、角的和差可得,然后根据三角形全等的判定定理即可得证;(2)设正方形的边长为x,从而可得,再根据旋转的性质可得,从而可得,然后根据三角形全等的性质可得,最后在中,利用勾股定理即可得【详解】(1)由旋转的性质得:四边形ABCD是正方形,即,即在和中,;(2)设正方形的边长为x,则由旋转的性质得:由(1)已证:又四边形ABCD是正方形则在中,即解得或(不符题意,舍去)故正方形的边长为6【考点】本题考查了正方形的性质、旋转的性质、三角形全

25、等的判定定理与性质、勾股定理等知识点,较难的是题(2),熟练掌握旋转的性质与正方形的性质是解题关键5、 (1)=(2)证明见解析(3),详见解析【解析】【分析】(1)根据旋转性质及等腰三角形性质即可得答案;(2)由旋转性质知AOB=DOC,可证得AOG=DOE,结合OA=OB及(1)中结论,得证;(3)分两种情况讨论,设A=x,先利用三角形内角和求出x的值,再借助勾股定理求出CD的长度即可(1)解:由旋转知,A=C,B=D,OA=OB,OC=OD,A=B=C=DA=D,故答案为:=(2)证明:由旋转知,OA=OC,OB=OD,AOB=COD,AOBBOC=CODBOC,即AOG=DOE,OA=OB,OA=OB=OC=OD,又A=D,AOGDOE(3)解:分两种情况讨论,如图所示,设A=B=C=D=x,则DOB=2x,OBCD,OED=90,x+2x=90,解得:x=30,即D=30,在RtODE中,OE=3,由勾股定理得:DE=,OC=OD,OECD,CD=2DE=当D与A重合时,如图所示,同理,得:CD=综上所述,当A,O,D三点共线时,OBCD,此时CD的长为【考点】本题考查了旋转的性质、等腰三角形性质、全等三角形的判定、勾股定理等知识点,解题关键是利用旋转性质得到边、角的关系

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3