收藏 分享(赏)

人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx

上传人:高**** 文档编号:1760902 上传时间:2024-06-11 格式:DOCX 页数:33 大小:1.09MB
下载 相关 举报
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第1页
第1页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第2页
第2页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第3页
第3页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第4页
第4页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第5页
第5页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第6页
第6页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第7页
第7页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第8页
第8页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第9页
第9页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第10页
第10页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第11页
第11页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第12页
第12页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第13页
第13页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第14页
第14页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第15页
第15页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第16页
第16页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第17页
第17页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第18页
第18页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第19页
第19页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第20页
第20页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第21页
第21页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第22页
第22页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第23页
第23页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第24页
第24页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第25页
第25页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第26页
第26页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第27页
第27页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第28页
第28页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第29页
第29页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第30页
第30页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第31页
第31页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第32页
第32页 / 共33页
人教版九年级数学上册第二十三章旋转同步训练试题(含答案解析版).docx_第33页
第33页 / 共33页
亲,该文档总共33页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十三章旋转同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知是等边三角形,边长为,将绕点逆时针旋转后点的对应点的坐标是()ABCD2、如图,将直角三角板绕顶点A顺时

2、针旋转到,点恰好落在的延长线上,则为()ABCD3、如图下面图形既是轴对称图形,又是中心对称图形的是()ABCD4、如图,在平面直角坐标系xOy中,ABC顶点的横、纵坐标都是整数若将ABC以某点为旋转中心,旋转得到ABC,则旋转中心的坐标是()A(1,1)B(1,1)C(0,0)D(1,2)5、如图,在平面直角坐标系中,已知点P(0,2),点A(4,2)以点P为旋转中心,把点A按逆时针方向旋转60,得点B在,四个点中,直线PB经过的点是()ABCD6、已知点P坐标为,将线段OP绕原点O逆时针旋转90得到线段,则点P的对应点的坐标为()ABCD7、如图,点A的坐标为,点B是x轴正半轴上的一点,将

3、线段AB绕点A按逆时针方向旋转60得到线段AC若点C的坐标为,则m的值为()ABCD8、如图,在矩形中,是矩形的对称中心,点、分别在边、上,连接、,若,则的值为()ABCD9、如图,RtABC中,C=90,A=30,AB=20,点P是AC边上的一个动点,将线段BP绕点B顺时针旋转60得到线段BQ,连接CQ则在点P运动过程中,线段CQ的最小值为()A4B5C10D510、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是()AB1C2D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面

4、直角坐标系内,点A(,2)关于原点中心对称的点的坐标是_2、如图,在中,为内一点,则的最小值为_3、在44的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有_种4、如图,将n个边长都为1cm的正方形按如图所示摆放,点A1, A2,An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为 _5、如图,ABC中,AB=6,DEAC,将BDE绕点B顺时针旋转得到BDE,点D的对应点D落在边BC上已知BE=5,DC=4,则BC的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,点在射线上,如果绕点按逆

5、时针方向旋转到,那么点的位置可以用表示(1)按上述表示方法,若,则点的位置可以表示为_;(2)在(1)的条件下,已知点的位置用表示,连接、求证:2、如图,ABC中,ABAC1,BAC45,AEF是由ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BECF ;(2)当四边形ACDE为菱形时,求BD的长3、【模型建立】(1)如图1,在正方形中,点E是对角线上一点,连接,求证:【模型应用】(2)如图2,在正方形中,点E是对角线上一点,连接,将绕点E逆时针旋转,交的延长线于点F,连接当时,求的长【模型迁移】(3)如图3,在菱形中,点E是对角线上一点,连接,将绕点E逆时针旋转,

6、交的延长线于点F,连接,与交于点G当时,判断线段与的数量关系,并说明理由4、图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段的端点均在格点上,分别按要求画出图形(1)在图1中画出等腰三角形,且点C在格点上(画出一个即可)(2)在图2中画出以为边的菱形,且点D,E均在格点上5、如图,先将绕点顺时针旋转得到,再将线段绕点顺时针旋转得到,连接、,且(1)若求证:、三点共线;求的长;(2)若,点在边上,求线段的最小值-参考答案-一、单选题1、B【解析】【分析】过点作于点过点作轴于点求出点的坐标,再利用全等三角形的性质求解【详解】解:过点作于点,过点作轴于点 是等边

7、三角形,在和中,故选:【考点】本题主要考查了等边三角形的判定与性质,旋转的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题2、B【解析】【分析】根据直角三角形两锐角互余,求出的度数,由旋转可知,在根据平角的定义求出的度数即可【详解】,由旋转可知,故答案选:B【考点】本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键3、B【解析】【详解】解:A、是轴对称图形,但不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;D、是轴对称图形,但不是中心对称图形

8、,故本选项不符合题意;故选:B【考点】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键4、A【解析】【分析】对应点连线的垂直平分线的交点即为旋转中心,然后直接写成坐标即可【详解】解:如图点O即为旋转中心,坐标为O(1,1) 故选:A【考点】本题主要考查了旋转中心的确定方法,熟练掌握对应点连线的垂直平分线的交点即为旋转中心是解题的关键5、B【解析】【分析】根据含30角的直角三角形的性质可得B(2,2+2

9、),利用待定系数法可得直线PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y=x+2中可解答【详解】解:点A(4,2),点P(0,2),PAy轴,PA=4,由旋转得:APB=60,AP=PB=4,如图,过点B作BCy轴于C,BPC=30,BC=2,PC=2,B(2,2+2),设直线PB的解析式为:y=kx+b,则,直线PB的解析式为:y=x+2,当y=0时,x+2=0,x=-,点M1(-,0)不在直线PB上,当x=-时,y=-3+2=1,M2(-,-1)在直线PB上,当x=1时,y=+2,M3(1,4)不在直线PB上,当x=2时,y=2+2,M4(2,)不在直线PB上故选:B【考

10、点】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B的坐标是解本题的关键6、B【解析】【分析】如图,作轴于,轴于,证明,有,进而可得点坐标【详解】解:如图,作轴于,轴于,在和中,故选B【考点】本题考查了绕原点旋转90的点坐标,三角形全等的判定与性质解题的关键在于熟练掌握旋转的性质7、C【解析】【分析】过C作CDx轴于D,CEy轴于E,根据将线段AB绕点A按逆时针方向旋转60得到线段AC,可得ABC是等边三角形,又A(0,2),C(m,3),即得,可得,从而,即可解得【详解】解:过C作CDx轴于D,CEy轴于E,如图所示:CDx轴,CEy轴,CDO=CEO=DOE90,四边形EO

11、DC是矩形,将线段AB绕点A按逆时针方向旋转60得到线段AC,ABAC,BAC60,ABC是等边三角形,ABACBC,A(0,2),C(m,3),CEmOD,CD3,OA2,AEOEOACDOA1,在RtBCD中,在RtAOB中,OBBDODm,化简变形得:3m422m2250,解得:或(舍去),故C正确故选:C【考点】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度8、D【解析】【分析】连接AC,BD,过点O作于点,交于点,利用勾股定理求得的长即可解题【详解】解:如图,连接AC,BD,过点O作于点,交于点,四边形ABCD是矩形,同理可得故选:D【

12、考点】本题考查中心对称、矩形的性质、勾股定理等知识,学会添加辅助线,构造直角三角形是解题关键9、D【解析】【分析】将RtABC绕点B顺时针旋转60得到,再设线段的中点为M,并连接CM根据线段BP的旋转方式确定点Q在线段上运动,再根据垂线段最短确定当Q与点M重合时,CQ取得最小值为CM根据C=90,A=30,AB=20求出BC的长度,再根据旋转的性质求出和的长度,根据线段的和差关系确定点C是线段的中点,进而确定CM是的中位线,再根据三角形中位线定理即可求出CM的长度【详解】解:如下图所示,将RtABC绕点B顺时针旋转60得到,再设线段的中点为M,并连接CM点P是AC边上的一个动点,线段BP绕点B

13、顺时针旋转60得到线段BQ,点Q在线段上运动当,即点Q与点M重合时,线段CQ取得最小值为CMC=90,A=30,AB=20,BC=10RtABC绕点B顺时针旋转60得到,=BC=10,点C是线段中点点M是线段的中点,CM是的中位线故选:D【考点】本题考查旋转的性质,直角三角形30所对的直角边是斜边的一半,垂线段最短,三角形中位线定理,综合应用这些知识点是解题关键10、A【解析】【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可

14、得MGCH时最短,再根据BCH=30求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=5=2.5,MG=CG=,HN=,故选A【考点】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点二、填空题1、(,2)【

15、解析】【分析】关于原点中心对称的点的坐标特征是:横坐标、纵坐标均变为原数的相反数【详解】解:点A(,2)关于原点中心对称的点的坐标是(,2) 故答案为:(,2)【考点】本题考查关于原点中心对称的点的坐标特征,是重要考点,难度较易,掌握相关知识是解题关键2、【解析】【分析】将APB绕点A顺时针旋转60,得到,连接、,作CN交的延长线于点N,则APB,由题意可证 是等边三角形,所以,所以当 共线时,最小,求出即可;【详解】将APB绕点A顺时针旋转60,得到,连接、,作CN交的延长线于点N,则APB,BAP= , , , , 是等边三角形, , , 当 共线时,最小,CAN=180- ,CNAN,A

16、CN=30, , , , , = ;故答案为:【考点】本题考查了全等三角形判定与性质,旋转的性质,以及等边三角形的性质和求线段最值的问题,掌握做辅助线是解题的关键3、13【解析】【分析】根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案【详解】如图所示:故一共有13画法.4、【解析】【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和【详解】由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为4,n个这样的正方形重叠部分(阴影部分)的面积和为(n-1)=cm

17、2【考点】本题考查了正方形的性质,熟悉正方形的性质是解题关键5、【解析】【详解】解:由旋转可得,BE=BE=5,BD=BD,DC=4,BD=BC4,即BD=BC4,DEAC,即,解得BC=(负值已舍去),即BC的长为故答案为【考点】本题主要考查了旋转的性质,解一元二次方程以及平行线分线段成比例定理的运用,解题时注意:对应点到旋转中心的距离相等解决问题的关键是依据平行线分线段成比例定理,列方程求解三、解答题1、 (1)(3,37)(2)见解析【解析】【分析】(1)根据点的位置定义,即可得出答案;(2)画出图形,证明AOABOA(SAS),即可由全等三角形的性质,得出结论(1)解:由题意,得A(a

18、,n),a=3,n=37,A(3,37),故答案为:(3,37);(2)证明:如图,B(3,74),AOA=37,AOB=74,OA= OB=3,AOB=AOB-AOA=74-37=37,OA=OA,AOABOA(SAS),AA=AB【考点】本题考查全等三角形的判定与性质,新定义,旋转的性质,熟练掌握全等三角形的判定与性质是解题的关键2、(1)证明见解析(2)-1 【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,EAF=BAC,则EAF+BAF=BAC+BAF,即EAB=FAC,利用AB=AC可得AE=AF,得出ACFABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=

19、AC=AB=1,ACDE,根据等腰三角形的性质得AEB=ABE,根据平行线得性质得ABE=BAC=45,所以AEB=ABE=45,于是可判断ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BEDE求解【详解】(1)AEF是由ABC绕点A按顺时针方向旋转得到的,AE=AB,AF=AC,EAF=BAC,EAF+BAF=BAC+BAF,即EAB=FAC,在ACF和ABE中,ACFABEBE=CF.(2)四边形ACDE为菱形,AB=AC=1,DE=AE=AC=AB=1,ACDE,AEB=ABE,ABE=BAC=45,AEB=ABE=45,ABE为等腰直角三角形,BE=AC=,BD=BEDE=考

20、点:1旋转的性质;2勾股定理;3菱形的性质3、(1)证明见解析;(2);(3),理由见解析【解析】【分析】(1)利用SAS证明即可;(2)先证,再利用勾股定理求解;(3)先证,再利用等边三角形的判定性质证明即可【详解】(1)证明:如图1中,四边形是正方形,在和中,;(2)解:如图2中,设交于点J由(1)知,EF是绕点E逆时针旋转得到,在中,;(3)解:结论:理由:如图3中,四边形是菱形,在和中,),是绕点E逆时针旋转得到的,是等边三角形,【考点】本题考查了正方形的性质,等边三角形的判定和性质,图形的旋转变换,全等三角形的判定和性质,勾股定理,正确理解图形的相关性质是解本题的关键4、 (1)见解

21、析(2)见解析【解析】【分析】利用轴对称图形、中心对称图形的特点画出符合条件的图形即可;(1)答案不唯一(2)【考点】本题考查了轴对称图形、中心对称图形的特点,熟练掌握特殊三角形与四边形的性质才能准确画出符合条件的图形5、 (1)证明见详解;BG= 4(2)线段PD的最小值为2+ 2【解析】【分析】(1)由旋转的性质可得ACD= 90=BCE, AB= DE,BC= CE, AC= CD,ABC=DEC= 135,由等腰三角形的性质可得BEC = 45 =CBE,可证BEC +CED= 180,可得结论;通过证明四边形ABDG是矩形,可得AD= BG,由等腰直角三角形的性质可求解;(2)由垂线

22、段最短可得当PDAB时,PD的长度有最小值,先证点P,点E,点D三点共线,由勾股定理可求DE的长,由正方形的性质可得BC= PE= 2,即可求解.(1)证明:如图,连接AG,将ABC绕点C顺时针旋转90得到DEC,ABCDEC,ACD= 90=BCE,AB=DE,BC=CE,AC=CD,ABC =DEC= 135BEC= 45=CBE,BEC+CED=180 B、E、D三点共线;将线段DE绕点D顺时针旋转90得到DGDE= DG,EDG = 90AB= DE= DG,ABE=ABC-CBE=90,ABE+EDG = 180,AB/DG,四边形ABDG是平行四边形,又BDG = 90四边形ABD

23、G是矩形, AD= BG,AC= CD=4,ACD= 90, AD=AC= 4,BG= 4;(2)如图:点P在边AB上,当PDAB时,PD的长度有最小值由旋转的性质可得:ABC=CED=BCE= 90,BC/ DE,ABC+BPD= 180,DP/ BC,点P,点E,点D三点共线,AC= 2CE,BC=CE= 2,又ABC=BPE=BCE= 90,四边形BPEC是正方形,BC= PE= 2,CD= AC=4, CE= 2,CED = 90, DE=DP=2+2,线段PD的最小值为2+ 2【考点】本题是几何变换综合题,考查了旋转的性质,全等三角形的性质,等腰三角形的性质,矩形的判定和性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3