ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:346.47KB ,
资源ID:1754887      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1754887-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022年高考数学必刷压轴题 专题23 极化恒等式(含解析).docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022年高考数学必刷压轴题 专题23 极化恒等式(含解析).docx

1、专题23 极化恒等式【方法点拨】极化恒等式:.说明:(1)极化恒等式的几何意义是:设点是ABC边的中点,则,即:向量的数量积可转化为中线长与半底边长的平方差(2)具有三角几何背景的数学问题利用极化恒等式考虑尤为简单,让“秒杀”向量数量积问题成为一种可能,此恒等式的精妙之处在于建立向量与几何长度(数量)之间的桥梁,实现向量与几何、代数的巧妙结合.(3)遇到共起点的两向量的数量积问题,常取第三边的中点,从而运用极化恒等式加以解决.【典型例题】例1 如图,在中,是的中点,是上两个三等分点,则的值是 【答案】【解析】设,由极化恒等式得,解之得可得,因此,因此21*cnjy*co点评: 紧紧把握极化恒等

2、式使用条件,三次使用极化恒等式求解.例2 已知是边长为2的等边三角形,是平面内一点,则的最小值为 【答案】【分析】本题的难点在于如何将“二合一”?注意到两向量共起点且其系数和为3,可利用三点共线的方法将其“二合一”,然后使用极化恒等式.【解析】设,则,在上所以如图,取中点为,由极化恒等式得在,由余弦定理得所以当,即为中点时,所以的最小值,此时为中点.例3 如图所示,矩形ABCD的边AB=4,AD=2,以点C为圆心,CB为半径的圆与CD交于点E,若点P是圆弧(含端点B、E)上的一点,则的取值范围是 .【答案】【分析】取AB的中点设为O,则,然后利用平几知识确定PO的取值范围,代入即可.【解析】取

3、AB的中点设为O,则,当O、P、C共线时, PO取得最小值为;当P 与B(或E)重合时,PO取得最大值为PO=2,所以的取值范围是.例4 半径为2的圆O上有三点A,B,C,满足,点是圆内一点,则的取值范围是( )A. B. C. D. 【答案】A【分析】直接两次使用极化恒等式即可.【解析】由得在平行四边形中,故易知四边形是菱形,且设四边形对角线的交点为E由极化恒等式得所以因为是圆内一点,所以所以,即,选A.例5 在ABC中,AC2BC4,ACB为钝角,M,N是边AB上的两个动点,且MN1,若的最小值为,则cosACB 【答案】【分析】取MN的中点P,由极化恒等式将“的最小值为”转化为AB边上的

4、高CH=1,然后利用两角差的的余弦公式求解.【解析】取MN的中点P,则由极化恒等式得的最小值为 由平几知识知:当CPAB时,CP最小.如图,作CHAB,H为垂足,则CH=1又AC2BC4,所以B30o,sinA=所以cosACBcos(150o A)=.H例6 已知直角三角形ABC中,AB=2,AC=4,点P在以A为圆心且与边BC相切的圆上,则的最大值为( )A B C D【答案】D【解析】设中点为,则,又因为,所以,故选:D.【巩固练习】1. 如图,在平面四边形ABCD中,O为BD的中点,且OA3,OC5.若7,则_.2矩形中,为矩形所在平面内一点,,矩形对角线,则值为 .3.若平面向量a,

5、b满足|2ab|3,则ab的最小值为_.4.已知平面向量a,b,e满足|e|1,ae1,be2,|ab|2,那么ab的最大值为_5.在中,已知,则面积的最大值是 6.已知单位向量,满足,则的值为( )ABCD17. 已知,且向量与的夹角为120,又,则的取值范围为( )ABCD8.已知平面向量满足,那么的最小值为_9.已知锐角的外接圆的半径为1, ,则的取值范围为_10.在中,若是所在平面内的一点,且,则的最大值为_.11.已知点是边长为的正三角形内切圆上的一点,则的取值范围为_.12.已知正方形ABCD的边长为1,中心为O,直线l经过中心O,交AB于点M,交CD于点N,P为平面上一点,若2(

6、1),则的最小值为_.13.设点P为正三角形ABC的边BC上的一个动点,当取得最小值时,sinPAC的值为_14.在平面直角坐标系xOy中,点A,B分别在x轴,y轴正半轴上移动,AB2,若点P满足2,则OP的取值范围为_15.在ABC中,E,F分别是线段AB,AC的中点,点P在直线EF上,若ABC的面积为2,则2的最小值是_16.在半径为1的扇形AOB中,若AOB60,C为弧AB上的动点,AB与OC交于点P,则的最小值是_【答案与提示】1.【答案】9【提示】两次使用极化恒等式,由得,.2.【答案】【提示】设矩形的对角线交点为O,由,得,.3.【答案】【解析】根据极化恒等式得:,故,所以的最小值

7、为4.【答案】54【提示】 由ae1,be2得: ae be3,即(ab)e3,|ab|cosq3ab=14|ab|2|ab|2545.【答案】【提示】取BC的中点为D,则,所以因为BC边上的高线长不大于中线长,当中线就是高线时,面积最大,故面积的最大值6.【答案】A【解析】,如图,设中点为,则,且,三点共线,为等腰三角形,.故选:A.7. 【答案】C【解析】连结,则设的中点为,由,易知,所以故,故选:C8.【答案】【解析】由,得,即 又(其中为向量与的夹角) 所以 所以.9.【答案】10.【答案】【提示】方法同上.11.【答案】12.【答案】13.【答案】14.【答案】15.【答案】16.【解析】如图,取OB的中点D,连接PD,则PD2OD2PD2,即求PD的最小值由图可知,当PDOB时,PDmin,则的最小值是.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3