收藏 分享(赏)

2014年高考数学一轮复习 热点难点精讲精析 2.8函数的图象.doc

上传人:高**** 文档编号:1750645 上传时间:2024-06-11 格式:DOC 页数:6 大小:343.50KB
下载 相关 举报
2014年高考数学一轮复习 热点难点精讲精析 2.8函数的图象.doc_第1页
第1页 / 共6页
2014年高考数学一轮复习 热点难点精讲精析 2.8函数的图象.doc_第2页
第2页 / 共6页
2014年高考数学一轮复习 热点难点精讲精析 2.8函数的图象.doc_第3页
第3页 / 共6页
2014年高考数学一轮复习 热点难点精讲精析 2.8函数的图象.doc_第4页
第4页 / 共6页
2014年高考数学一轮复习 热点难点精讲精析 2.8函数的图象.doc_第5页
第5页 / 共6页
2014年高考数学一轮复习 热点难点精讲精析 2.8函数的图象.doc_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 2014年高考一轮复习热点难点精讲精析:2.8函数的图象一、作函数的图象1、相关链接(1)直接法:当函数表达式(或变形后的表达式)是熟悉的函数或解析几何中熟悉的曲线的局部(如圆、椭圆、双曲线、抛物线的一部分)时,就可根据这些函数的奇偶性、周期性、对称性或曲线的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响. (3)描点法:当函数的表达式不适合用以上两种方法时,则可采用描点法,其一般步骤为:第一步:确定函数的定义域以限

2、制图象的范围.第二步:化简函数表达式.第三步:讨论函数的性质(如奇偶性、单调性、周期性、对称性等).第四步:列表(尤其注意特殊点,如:零点、最高点、最低点及与坐标轴的交点).第五步:描点、连线.注:当函数表达式是高次、分式、指数、对数及三角函数式等较复杂的结构时,常借助于导数探究图象的变化趋势从而画出图象的大致形状.2、例题解析【例1】作出下列函数的图象(1)y=elnx;(2)y=|log2(x+1)|;(3)y=a|x|(0a0且y=elnx=x(x0),其图象如图(1).(2)将函数y=log2x的图象向左平移一个单位,再将x轴下方的部分沿x轴翻折上去,即可得到函数y=|log2(x+1

3、)|的图象,如图(2).(3)方法一:所以只需作出函数y=ax(0a1)中x0的图象和中x0的图象,合起来即得函数y=a|x|的图象.如图(3).方法二:作出y=ax(0a0,得单调增区间为(-,-1)和(3,+).令y0,得单调减区间为(-1,3),所以函数在x1=-1,x2=3处取得极值分别为和-9,由此可得其图象大致如图(5).注:要准确作出函数的大致图象,需做到:(1)熟练掌握六类基本初等函数的图象;(2)掌握平移变换、对称变换、翻折变换、伸缩变换以及导数法等常用的方法技巧.二、识图与辨图1、相关链接知图选式的方法(1)从图象的左右、上下分布,观察函数的定义域、值域;(2)从图象的变化

4、趋势,观察函数的单调性;(3)从图象的对称性方面,观察函数的奇偶性;(4)从图象的循环往复,观察函数的周期性.利用上述方法,排除、筛选错误与正确的选项.知式选图的方法:(1)从函数的定义域,判断图象左右的位置;从函数的值域,判断图象上下的位置;(2)从函数的单调性(有时可借助导数判断),判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的极值点判断函数图象的拐点.利用上述方法,排除、筛选错误与正确的选项.注:注意联系基本函数图象的模型,当选项无法排除时,代特殊值,或从某些量上也能寻找突破口2、例题解析【例1】(1)(2012南阳模

5、拟)函数y=x+cosx的大致图象是( )(2)定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是( )【方法诠释】(1)对函数求导,利用排除法求解.(2)由f(x)的奇偶性作出其在(-2,0)上的图象.由图象判断其单调性,再逐个验证选项中函数在(-2,0)上的单调性是否与f(x)在(-2,0)上的单调性不同,从而作出判断.解析:(1)选. 由y=x+cosx,得y=1-sinx,令y=0,得sinx=1,即函数y=x+cosx有无穷多个极值点,从而排除选项,又x=0时,y=1,即图象应过(0,1)点,再排除,比较、与y轴交点纵坐标与的大小知

6、应选.(2)选.由奇偶性知函数f(x)在(-2,0)上的图象如图所示:则知f(x)在(-2,0)上为单调减函数,而y=x2+1,y=|x|+1和作出其图象知在(-2,0)上均为减函数.又y=x3+1,x0,故y=x3+1在(-2,0)上为增函数,与f(x)的单调性不同,故选.注:识图与辨图是一个比较综合的问题.解答该类问题的关键是要充分从解析式与图象中发现有价值的信息,最终使二者相吻合.三、函数图象的应用1、相关链接(1)利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关

7、系.(2)利用函数的图象研究方程根的个数当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程f(x)=0的根就是函数f(x)图象与x轴的交点的横坐标,方程f(x)=g(x)的根就是函数f(x)与g(x)图象的交点的横坐标.(3)利用函数的图象研究不等式当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.2、例题解析【例】已知函数f(x)=x|m-x|(xR),且f(4)=0. (1)求实数m的值;(2)作出函数f(x)的图象并判断其零点个数;(3)根据图象指出f(x)的单调递减区间;(4)根据图象写出不等式f(x)0的解集

8、;(5)求集合M=m|使方程f(x)=m有三个不相等的实根.【解题指南】求解本题先由f(4)=0,求得函数解析式,再根据解析式结构选择适当的方法作出函数的图象,进而应用图象求解(3)(4)(5)三个小题.【规范解答】(1)f(4)=0,4|m-4|=0,即m=4; (2)f(x)=x|m-x|函数f(x)的图象如图:由图象知f(x)有两个零点.(3)从图象上观察可知:f(x)的单调递减区间为2,4;(4)从图象上观察可知:不等式f(x)0的解集为:x|0x4.(5)由图象可知若y=f(x)与y=m的图象有三个不同的交点,则0m4,集合M=m|0m4.注:利用函数的图象能直观地解决函数的性质问题、方程根的个数问题、函数的零点个数问题及不等式的解集与恒成立问题,但其关键是作出准确的函数图象,数形结合求解.否则若图象出现失误,将得到错误的结果.6

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3