ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:202KB ,
资源ID:1750285      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1750285-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(函数模型及其应用教案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

函数模型及其应用教案.doc

1、适用学科高中数学适用年级高一适用区域通用课时时长(分钟)2课时知识点1.几类不同增长的函数模型的特点2.用已知函数模型解决实际问题3.建立函数模型解决实际问题教学目标1利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义;2了解社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例。教学重点了解函数模型的广泛应用。教学难点了解函数模型的广泛应用。【教学建议】本课内容是函数的应用,它的本质就是我们学习过的函数做为模型在现实问题刻画过程中的基本操作过程和常见函数图象与性质在应用中的升华.本课内容是课本必修1中

2、第三章的重点内容之一,课本中还渗透了函数拟合的基本思想,这也为后面高中的学习做了铺垫。通过本节的学习,要使学生从中体会函数模型刻画现实问题的基本过程并体会函数在数学及其它地方的应用的广泛性,能初步运用函数的思想解决现实生活中的一些简单问题,函数模型本身就来源于现实,学生可以从理解知识升华到熟练应用知识,使他们能辩证地看待知识理解与知识应用间的关系,与所学的函数知识前后紧紧相扣,相辅相成.【知识导图】教学过程一、导入【教学建议】导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状态。导入的方法很多,仅举两种方法: 情境导入,比如讲一个和本讲内容有关的生活现象; 温故知新,

3、在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学生建立知识网络。提供一个教学设计供讲师参考:环节教学内容设计师生双边互动创设情境材料:澳大利亚兔子数“爆炸”在教科书第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五

4、十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气师:指出:一般而言,在理想条件(食物或养料充足,空间条件充裕,气候适宜,没有敌害等)下,种群在一定时期内的增长大致符合“J”型曲线;在有限环境(空间有限,食物有限,有捕食者存在等)中,种群增长到一定程度后不增长,曲线呈“S”型可用指数函数描述一个种群的前期增长,用对数函数描述后期增长的组织探究 例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番请问,你会选

5、择哪种投资方案?探究:1)在本例中涉及哪些数量关系?如何用函数描述这些数量关系?2)分析解答(略)3)根据例1表格中所提供的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?师:创设问题情境,以问题引入能激起学生的热情,使课堂里的有效思维增强生:阅读题目,理解题意,思考探究问题师:引导学生分析本例中的数量关系,并思考应当选择怎样的函数模型来描述生:观察表格,获取信息,体会三种函数的增长差异,特别是指数爆炸,说出自己的发现,并进行交流师:引导学生观察表格中三种方案的数量变化情况,对于“增加量”进行比较,体会“直线增长”、“指数爆炸”等环节教学内容设计师生双边互动组织探究4)你能借助计算

6、器或计算机作出函数图象,并通过图象描述一下三种方案的特点吗?5)根据以上分析,你认为就作出如何选择?师:引导学生利用函数图象分析三种方案的不同变化趋势生:对三种方案的不同变化趋势作出描述,并为方案选择提供依据师:引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益生:通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本全的完整解答,然后全班进行交流例2某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增

7、加而增加但奖金不超过5万元,同时奖金不超过利润的25%现有三个奖励模型: 问:其中哪个模型能符合公司的要求?探究:1) 本例涉及了哪几类函数模型?本例的实质是什么?2)你能根据问题中的数据,判定所给的奖励模型是否符合公司要求吗?师:引导学生分析三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况生:进一步体会三种基本函数模型在实际中的广泛应用,体会它们的增长差异师:引导学生分析问题使学生得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择环节呈现教学材料师生互动设计组织探究3)通过对三个函数模型增长差异的比较

8、,写出例2的解答生:分析数据特点与作用判定每一个奖励模型是否符合要求师:引导学生利用解析式,结合图象,对三个模型的增长情况进行分析比较,写出完整的解答过程生:进一步认识三个函数模型的增长差异,对问题作出具体解答探究与发现幂函数、指数函数、对数函数的增长差异分析:你能否仿照前面例题使用的方法,探索研究幂函数、指数函数、对数函数在区间上的增长差异,并进行交流、讨论、概括总结,形成较为准确、详尽的结论性报告师:引导学生仿照前面例题的探究方法,选用具体函数进行比较分析生:仿照例题的探究方法,选用具体函数进行研究、论证,并进行交流总结,形成结论性报告师:对学生的结论进行评析,借助信息技术手段进行验证演示

9、巩固与反思尝试练习:1) 教材P116练习1、2;2) 教材P119练习小结与反思:通过实例和计算机作图体会、认识直线上升、指数爆炸、对数增长等不同函数模型的增长的含义,认识数学的价值,认识数学与现实生活、与其他学科的密切联系,从而体会数学的实用价值,享受数学的应用美生:通过尝试练习进一步体会三种不同增长的函数模型的增长差异及其实际应用师:培养学生对数学学科的深刻认识,体会数学的应用美二、知识讲解考点1解决实际问题的解题过程(1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;(2)建立函数模型:将变量y表示为x的函数,在中学

10、数学内,我们建立的函数模型一般都是函数的解析式;(3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.这些步骤用框图表示:实际问题函数模型实际问题的解函数模型的解抽象概括还原说明运用函数性质考点2 解决函数应用的能力题应着重培养下面一些能力(1)阅读理解、整理数据的能力:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型的能力:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数

11、模型的能力:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用。三 、例题精析类型一 用函数图象刻画变化过程例题1 (1)设甲、乙两地的距离为a(a0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()(2)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率

12、(单位时间的运输量)逐步提高的是()答案与解析解析(1)y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C;又因为小王在乙地休息10分钟,故排除B,故选D.(2)由运输效率(单位时间的运输量)逐步提高得,曲线上的点的切线斜率应该逐渐增大,故函数的图象应一直是下凹的,故选B.【总结与反思】判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案例

13、题2某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图210中(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图210中(2)的抛物线表示.图210(1)写出图中(1)表示的市场售价与时间的函数关系式Pf(t);写出图中(2)表示的种植成本与时间的函数关系式Qg(t);(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元102,kg,时间单位:天)答案与解析解:(1)由图(1)可得市场售价与时间的函数关系为f(t)由图(2)可得种植成本与时间的函数关系为g(t)(t150)2100,

14、0t300(2)设t时刻的纯收益为h(t),则由题意得h(t)f(t)g(t),即h(t)当0t200时,配方整理得h(t)(t50)2100,所以,当t50时,h(t)取得区间0,200上的最大值100;当200t300时,配方整理得h(t)(t350)2100,所以,当t300时,h(t)取得区间(200,300上的最大值87.5.综上,由100875可知,h(t)在区间0,300上可以取得最大值100,此时t50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.类型二 已知函数模型的实际问题例题1候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度

15、v(单位:m/s)与其耗氧量Q之间的关系为(其中a、b是实数)据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a、b的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s,则其耗氧量至少要多少个单位?答案与解析(1)由题意可知,当这种鸟类静止时,它的速度为0 m/s,此时耗氧量为30个单位,故有0,即ab0;当耗氧量为90个单位时,速度为1 m/s,故1,整理得a2b1.解方程组得(2)由(1)知,v1log3.所以要使飞行速度不低于2 m/s,则有v2,即1log32,即log33,解得Q270.所以若这种鸟类为赶路程,飞行

16、的速度不能低于2 m/s,则其耗氧量至少要270个单位【总结与反思】求解所给函数模型解决实际问题的关注点(1)认清所给函数模型,弄清哪些量为待定系数(2)根据已知利用待定系数法,确定模型中的待定系数(3)利用该模型求解实际问题类型三 构造函数模型的实际问题例题1某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y14.1x0.1x2,在B地的销售利润(单位:万元)为y22x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A10.5万元 B11万元C43万元 D43.025万元答案与解析解析设公司在A地销售该品牌的汽车

17、x辆,则在B地销售该品牌的汽车(16x)辆,所以可得利润y4.1x0.1x22(16x)0.1x22.1x320.1(x)20.132.因为x0,16,且xN,所以当x10或11时,总利润取得最大值43万元例题2(1)世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数据)()A1.5% B1.6% C1.7% D1.8%(2)某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A略有盈利B略有亏损C没有盈利也没有亏损D无法判断盈亏情况答案与解析答案(1) C

18、 (2)B解析(1)设每年人口平均增长率为x,则(1x)402,两边取以10为底的对数,则40 lg(1x)lg 2,所以lg(1x)0.007 5,所以100.007 51x,得1x1.017,所以x1.7%.C(2)设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(110%)na1.1n元,经历n次跌停后的价格为a1.1n(110%)na1.1n0.9na(1.10.9)n0.99naa,故该股民这支股票略有亏损B例题3某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8

19、km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元现某人乘坐一次出租车付费22.6元,则此次出租车行驶了 km.答案与解析答案9解析设出租车行驶x km时,付费y元,则y由y22.6,解得x9.【总结与反思】构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制四 、课堂运用基础1.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动设点P运动的路程为x,ABP的面积为S,则函数Sf(x)的图象是()2.某般空公司规定,乘飞机所携带行李的质量(kg)与其运费

20、(元)由如图的一次函数图象确定,那么乘客可免费携带行李的质量最大为 kg.3.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据道路交通安全法规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL,那么,此人至少经过 小时才能开车(精确到1小时)4.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元为使该设备年平均费用最低,该企业需要更新设备的年数为()A10 B11 C13

21、 D21答案与解析1. 【答案】D【解析】依题意知当0x4时,f(x)2x;当4x8时,f(x)8;当8x12时,f(x)242x,观察四个选项知,选D.2. 【答案】19【解析】由图象可求得一次函数的解析式为y30x570,令30x5700,解得x19.3.【答案】(1)5【解析】设经过x小时才能开车由题意得0.3(125%)x0.09,0.75x0.3,xlog0.750.34.19.x最小为5.4. 【答案】A【解析】设该企业需要更新设备的年数为x,设备年平均费用为y,则x年后的设备维护费用为242xx(x1),所以x年的平均费用为yx1.5,由基本不等式得yx1.521.521.5,当

22、且仅当x,即x10时取等号,所以选A.巩固1. 已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元设公司一年内共生产该款手机x万部并全部销售完,每万部的销售收入为R(x)万美元,且R(x)(1)写出年利润W(万美元)关于年产量x(万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润答案与解析1答案(1)W(2)W取得最大值6 104万元解析(1)当040时,WxR(x)(16x40)16x7 360.所以W(2)当040时,W16x7 360,由于16x21 600,当且仅当16x,即x50(40,)时

23、,取等号,所以W取最大值为5 760.10分综合知,当x32时,W取得最大值6 104万元拔高1.用水清洗一堆蔬菜上残留的农药对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上设用x单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数f(x).(1)试规定f(0)的值,并解释其实际意义;(2)试根据假定写出函数f(x)应该满足的条件和具有的性质;(3)设f(x)=,现有a(a0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明

24、理由2.有一个湖泊受污染,其湖水的容量为V立方米,每天流入湖的水量等于流出湖的水量。现假设下雨和蒸发平衡,且污染物和湖水均匀混合。用,表示某一时刻一立方米湖水中所含污染物的克数(我们称其湖水污染质量分数),表示湖水污染初始质量分数。(1)当湖水污染质量分数为常数时,求湖水污染初始质量分数;(2)分析时,湖水的污染程度如何。答案与解析1答案解析(1)f(0)=1表示没有用水洗时,蔬菜上的农药量将保持原样(2)函数f(x)应该满足的条件和具有的性质是:f(0)=1,f(1)=,在0,)上f(x)单调递减,且0f(x)1(3)设仅清洗一次,残留的农药量为f1,清洗两次后,残留的农药量为f2,则于是,

25、当a2时,f1f2;当a=2时,f1f2;当0a2时,f1f2因此,当a2时,清洗两次后残留的农药量较少;当a=2时,两种清洗方法具有相同的效果;当0a2时,一次清洗残留的农药量较少2答案解析(1)设,因为为常数,即,则;(2)设,=因为,。污染越来越严重。五 、课堂小结1认真分析题意,合理选择数学模型是解决应用问题的基础2实际问题中往往解决一些最值问题,我们可以利用二次函数的最值、函数的单调性、基本不等式等求得最值3解函数应用题的五个步骤:审题;建模;解模;还原;反思六 、课后作业基础1细菌繁殖时,细菌数随时间成倍增长若实验开始时有300个细菌,以后的细菌数如下表所示:x(h)0123细菌数

26、3006001 2002 400据此表可推测实验开始前2 h的细菌数为()A75 B100 C150 D2002某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如右图所示,由图中给出的信息可知,营销人员没有销售量时的收入是()A310元 B300元C290元 D280元7某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是()A减少7.84% B增加7.84%C减少9.5% D不增不减3某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象

27、正确的是()4把长为12 cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是()A.cm2 B4 cm2C3 cm2 D2 cm25某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为()Ax15,y12 Bx12,y15Cx14,y10 Dx10,y14答案与解析答案1B由题意可知,收入y是销售量x的一次函数,设yaxb,将(1,800),(2,1 300)代入得a500,b300.当销售量为x0时,y300.2A设某商品价格为a,依题意得:a(10.

28、2)2(10.2)2a1.220.820.921 6a,所以四年后的价格与原来价格比较(0.921 61)a0.078 4a,即减少7.84%.3A由于前三年年产量的增长速度越来越快,可用指数函数刻画,后三年年产量保持不变,可用一次函数刻画,故选A.4D设一段长为x cm,则另一段长为(12x)cm.S()2(4)2(x6)222.5A由三角形相似得,得x(24y),Sxy(y12)2180.当y12时,S有最大值,此时x15.巩固1下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是()x45678910y15171921232527A一次函数模型 B幂函数模型C指数函数模型 D对数

29、函数模型2某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是()A118元 B105元C106元 D108元3某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是()4将出货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为()A85元 B90元C95元 D100元5我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税已知某种酒每瓶售价为70元,

30、不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x元(叫做税率x%),则每年销售量将减少10x万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x的最小值为()A2 B6C8 D10答案与解析1答案A解析根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型2答案D解析设进货价为a元,由题意知132(110%)a10%a,解得a108.3答案A解析前3年年产量的增长速度越来越快,说明呈高速增长,只有A,C图象符合要求,而后3年年产量保持不变,故选A.4答案C解析设每个售价定为x元,则利润y(x80)400(x90)2020(

31、x95)2225当x95时,y最大5答案A解析由分析可知,每年此项经营中所收取的附加税额为104(10010x)70,令104(10010x)70112104,解得2x8.故x的最小值为2.拔高1有浓度为90%的溶液100 g,从中倒出10 g后再倒入10 g水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 20.301 0,lg 30.477 1)()A19 B20 C21 D222.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x、y应为()Ax15,y

32、12 Bx12,y15Cx14,y10 Dx10,y143某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为yekt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k ,经过5小时,1个病毒能繁殖为 个4某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算.可以享受折扣优惠金额折扣率不超过500元的部分5%超过500元的部分10%某人在此商场购物总金额为x元,可以获得的折扣金额为y元,则y关于x的解析式为y若y30元,则他购物实际所付金额为 元答案与解析答案C解析操作次数为n时的浓度为,由21.8,n21.答案A解析由三角形相似得,得x(24y),Sxy(y12)2180,当y12时,S有最大值,此时x15.答案2ln 21 024解析当t0.5时,y2,2e,k2ln 2,ye2tln 2,当t5时,ye10ln 22101 024.答案1 350解析若x1 300元,则y5%(1 300800)25(元)1 300.由10%(x1 300)2530,得x1 350(元)第 16 页

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3