1、第6课圆锥曲线综合【考点导读】1. 在理解和掌握圆锥曲线的定义和简单几何性质的基础上,把握有关圆锥曲线的知识内在联系,灵活地运用解析几何的常用方法解决问题.2. 通过问题的解决,理解函数与方程、等价转化、数形结合、分类讨论等数学思想.3. 能够抓住实际问题的本质建立圆锥曲线的数学模型,实现实际问题向数学问题的转化,并运用圆锥曲线知识解决实际问题.【基础练习】1. 给出下列四个结论:当a为任意实数时,直线恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是;已知双曲线的右焦点为(5,0),一条渐近线方程为,则双曲线的标准方程是;抛物线;已知双曲线,其离心率,则m的取值范围是(12,0)。其中所
2、有正确结论的个数是42.设双曲线以椭圆长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为3.如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是【范例导析】例1. 已知抛物线的焦点为F,A、B是热线上的两动点,且过A、B两点分别作抛物线的切线,设其交点为M。(I)证明为定值;(II)设的面积为S,写出的表达式,并求S的最小值。解:(1)F点的坐标为(0,1)设A点的坐标为 B点的坐标为由可得因此过A点的切线方程为 (1)过B点的切线方程为 (2)解(1)( 2)构成的方程组可得点M的坐标,从而得到=0 即为定值(2)=0可得三角形面积 所以当且仅当时取等号点拨:本题主要考察
3、共线向量的关系,曲线的切线方程,直线的交点以及向量的数量积等知识点涉及均值不等式,计算较复杂.难度很大【反馈练习】1.已知双曲线的中心在原点,离心率为.若它的一条准线与抛物线的准线重合,则该双曲线与抛物线的交点到原点的距离是2.设分别是双曲线的左、右焦点若点在双曲线上,且,则3.设P是椭圆上一点,、 是椭圆的两个焦点,则的最小值是4.已知以F1(2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为5. 双曲线C与椭圆的焦点相同,离心率互为倒数,则双曲线C的渐近线的方程是6.已知椭圆与双曲线在第一象限内的交点为,则点到椭圆右焦点的距离等于_2 _ 7.如图,点A是椭圆C:
4、的短轴位于x轴下方的端点,过A作斜率为1的直线交椭圆于B点,点P在y轴上,且BPx轴,9,若点P的坐标为(0,1),求椭圆C的方程.8.在平面直角坐标系中,已知圆心在第二象限、半径为的圆与直线相切于坐标原点椭圆与圆的一个交点到椭圆两焦点的距离之和为求圆的方程.解:设圆心坐标为(m,n)(m0),则该圆的方程为(x-m)2+(y-n)2=8已知该圆与直线y=x相切,那么圆心到该直线的距离等于圆的半径,则=2即=4 又圆与直线切于原点,将点(0,0)代入得m2+n2=8 联立方程和组成方程组解得故圆的方程为(x+2)2+(y-2)2=89.已知动圆过定点,且与直线相切,其中,求动圆圆心的轨迹的方程.解:如图,设为动圆圆心,为记为,过点作直线的垂线,垂足为,由题意知:即动点到定点与定直线的距离相等由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线所以轨迹方程为;第9题第 4 页