ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:281.50KB ,
资源ID:174047      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-174047-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《优化方案》2016高考总复习(人教A版)高中数学 专题讲 座二 创新性问题.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《优化方案》2016高考总复习(人教A版)高中数学 专题讲 座二 创新性问题.doc

1、专题讲座二创新性问题新课程标准要求学生对“新颖的信息、情景和设问选择有效的方法和手段收集信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立思考、探索和探究,提出解决问题的思路,创造性地解决问题”随着新一轮课程改革的深入和推进,高考的改革使知识立意转向能力立意,推出了一批新颖而又别致,具有创新意识和创新思维的新题高考创新性问题重点出在函数、数列、不等式、立体几何和解析几何等方面,大多会结合合情推理知识点出探索型问题(特别是解答题),应加强对这些内容的研究;创新题型多出现与经济、生活密切相关(像概率、线性规划等)的数学问题,题目新颖,数学知识并不复杂,关注以下三种类型:新定义型新定义问题是

2、近几年高考命题创新型试题的一个热点,此类题目常常以“问题”为核心,以“探究”为途径,以“发现”为目的,常见的命题形式有新定义、新运算、新性质,考查考生理解问题、解决创新问题的能力(1)(2014高考广东卷)对任意复数1,2,定义1*21,其中2是2的共轭复数,对任意复数z1,z2,z3有如下四个命题:(z1z2)*z3(z1*z3)(z2*z3);z1*(z2z3)(z1*z2)(z1*z3);(z1*z2)*z3z1*(z2*z3);z1*z2z2*z1.则真命题的个数是()A1B2C3 D4(2)(2014高考福建卷)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L距

3、离”定义为|P1P2|x1x2|y1y2|,则平面内与x轴上两个不同的定点F1,F2的“L距离”之和等于定值(大于|F1F2)的点的轨迹可以是()解析(1)由题意得(z1z2)*z3(z1z2) z1z2z1*z3z2*z3,故正确;z1*(z2z3)z1()z1z1(z1*z2)+(z1*z3),故正确;(z1*z2)*z3z1,而z1*(z2*z3)z1故错误;z1*z2z1,而z2* z1z2,故不正确故选B. (2)设F1(c,0),F2(c,0),P(x,y),则点P满足:|PF1|PF22a(2a|F1F2),代入坐标,得|xc|xc|2|y|2a.当y0时,y当y0时,y所以图象

4、应为A.答案(1)B(2)A规律方法解决新定义问题分为三步:(1)对新定义进行信息提取,确定化归的方向;(2)对新定义所提取的信息进行加工,探求解决方法;(3)对定义中提出的知识进行转换,有效地输出其中对定义信息的提取和转化与化归是解题的关键,也是解题的难点类比归纳型类比归纳型创新题给出了一个数学情景或一个数学命题,要求用发散思维去联想、类比、推广、转化,找出类似的命题,或者根据一些特殊的数据、特殊的情况去归纳出一般的规律,这是新课程较为重视的类比推理、归纳推理主要考查学生的观察、分析、类比、归纳的能力,从不变中找规律,从不变中找变化(2014高考北京卷)对于数对序列P:(a1,b1),(a2

5、,b2),(an,bn),记T1(P)a1b1,Tk(P)bkmaxTk1(P),a1a2ak(2kn),其中maxTk1(P),a1a2ak表示Tk1(P)和a1a2ak两个数中最大的数(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P:(c,d),(a,b),试分别对ma和md两种情况比较T2(P)和T2(P)的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P

6、使T5(P)最小,并写出T5(P)的值(只需写出结论)解(1)T1(P)257,T2(P)1maxT1(P),241max7,68.(2)T2(P)maxabd,acd,T2(P)maxcdb,cab当ma时,T2(P)maxcdb,cabcdb. 因为abdcbd,且acdcbd,所以T2(P)T2(P) 当md时,T2(P)maxcdb,cabcab.因为abdcab,且acdcab,所以T2(P)T2(P)所以无论ma还是md,T2(P)T2(P)都成立(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小T1(P)10,T2(P)26,

7、T3(P)42,T4(P)50,T5(P)52.规律方法解决创新性问题应注意:认真审题,确定目标;深刻理解题意;开阔思路,发散思维,运用观察、比较、类比、联想、猜想等带有非逻辑思维成分的合理推理,以便为逻辑思维定向方向确定后,又需借助逻辑思维,进行严格推理论证,这两种推理的灵活运用,两种思维成分的交织融合,便是处理这类问题的基本思想方法和解题策略信息迁移型创新题是指以学生已有的知识为基础,并给出一定容量的新信息,通过阅读,从中获取有关信息,捕捉解题信息,发现问题的规律,找出解决问题的方法,并应用于新问题的解答,它既能有效地考查学生的思维品质和学习潜力,又能考查学生的综合能力和创新能力(2013

8、高考重庆卷)对正整数n,记In1,2,n,Pn.(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”,求n的最大值,使Pn能分成两个不相交的稀疏集的并解(1)当k4时,中有3个数与I7中的3个数重复,因此P7中元素的个数为77346.(2)先证:当n15时,Pn不能分成两个不相交的稀疏集的并若不然,设A,B为不相交的稀疏集,使ABPnIn.不妨设IA,则因为1322,故3A,即3B.同理,6A,10B,又推得15A,但11542,这与A为稀疏集矛盾再证P14符合要求当k1时,I14可分成两个稀疏集之并,事实上,只要取A11,2,4,6,9,11

9、,13,B13,5,7,8,10,12,14,则A1,B1为稀疏集,且A1B1I14.当k4时,集合中除整数外剩下的数组成集,可求解为下面两稀疏集的并:A2,B2.当k9时,集合中除正整数外剩下的数组成集,可分解为下面两稀疏集的并:A3,B3.最后,集合C中的数的分母均为无理数,它与P14中的任何其他数之和都不是整数,因此,令AA1A2A3C,BB1B2B3,则A和B是不相交的稀疏集,且ABP14.综上可知,所求n的最大值为14.规律方法本题主要考查数集、集合的基本性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义“稀疏集”这一概念,考查考生分析探究及推理论证的能力综合考查集合的基

10、本运算,集合问题一直是近几年的命题重点内容,应引起足够的重视,学生用书P101)1(2015吉林长春调研)对于非空实数集A,记A*y|xA,yx设非空实数集合M,P满足:MP,且若x1,则xP.现给出以下命题:对于任意给定符合题设条件的集合M,P,必有P*M*;对于任意给定符合题设条件的集合M,P,必有M*P;对于任意给定符合题设条件的集合M,P,必有MP*;对于任意给定符合题设条件的集合M,P,必存在常数a,使得对任意的bM*,恒有abP*,其中正确的命题是()ABC D解析:选C.对于,假设MP,则M*,则M*P,因此错误;对于,假设MP,则M,又P*,则MP*,因此也错误;而和都是正确的

11、2(2015贵州省六校联考)给出定义:若x(其中m为整数),则m叫做与实数x“亲密的整数”,记作xm,在此基础上给出下列关于函数f(x)|xx|的四个命题:函数yf(x)在x(0,1)上是增函数;函数yf(x)的图象关于直线x(kZ)对称;函数yf(x)是周期函数,最小正周期为1;当x(0,2时,函数g(x)f(x)ln x有两个零点其中正确命题的序号是()A BC D解析:选A. 由函数定义可知当x时,f(x)|xx|x0|;当x时,f(x)|xx|x1|;当x时,f(x)|xx|x2|;.可以作出函数的图象(如图),根据函数的图象可以判断错误,是正确的,由函数的图象再作出函数yln x,x

12、(0,2的图象,可判断有两个交点,故也正确3若有穷数列a1,a2,an(n是正整数)满足a1an,a2an1,ana1,即aiani1(i是正整数,且1in),就称该数列为“对称数列”已知数列bn是项数为7的“对称数列”,且b1,b2,b3,b4成等差数列,b12,b411,则bn的项为_解析:设数列b1,b2,b3,b4的公差为d,则b4b13d23d11,解得d3,所以数列bn的项为2,5,8,11,8,5,2.答案:2,5,8,11,8,5,24(2015海淀区第二学期期中练习)已知向量序列:a1,a2,a3,an,满足如下条件:|a1|4|d|2,2a1d1且anan1d(n2,3,4

13、,)若a1ak0,则k_;|a1|,|a2|,|a3|,|an|,中第_项最小解析:因为anan1d,所以a2a1d,a3a2d,anan1d,利用叠加法可得ana1(n1)d.因为a1ak0,所以a1a1(k1)d0,a(k1)a1d0,即4(k1)0,k9.又aa(n1)2d22(n1)a1d(n1)4(n3)23,所以当n3时,a取最小值,即|an|取最小值答案:935(2015海淀区第二学期期中练习)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横、纵坐标都是整数的点)A(n):A1,A2,A3,An与B(n):B1,B2,B3,Bn,其中n3,若同时满足:两点列的起

14、点和终点分别相同;线段AiAi1BiBi1,其中i1,2,3,n1,则称A(n)与B(n)互为正交点列(1)求A(3):A1(0,2),A2(3,0),A3(5,2)的正交点列B(3);(2)判断A(4):A1(0,0),A2(3,1),A3(6,0),A4(9,1)是否存在正交点列B(4)?并说明理由;(3)n5,nN,是否都存在无正交点列的有序整点列A(n)?并证明你的结论解:(1)设点列A1(0,2),A2(3,0),A3(5,2)的正交点列是B1,B2,B3,由正交点列的定义可知B1(0,2),B3(5,2),设B2(x,y),由(3,2),(2,2),(x,y2),(5x,2y),由

15、正交点列的定义可知0,0,即,解得,所以点列A1(0,2),A2(3,0),A3(5,2)的正交点列是B1(0,2),B2(2,5),B3(5,2)(2)由题可得(3,1),(3,1),(3,1),设点列B1,B2,B3,B4是点列A1,A2,A3,A4的正交点列,则可设1(1,3),2(1,3),3(1,3),1,2,3Z,因为A1与B1,A4与B4相同,所以有1239,3132331,因为1,2,3Z,方程显然不成立,所以有序整点列A1(0,0),A2(3,1),A3(6,0),A4(9,1)不存在正交点列(3)n5,nN,都存在整点列A(n)无正交点列n5,nN,设AiAi1(ai,bi

16、),其中ai,bi是一对互质整数,i1,2,3,n1,若有序整点列B1,B2,B3,Bn是点列A1,A2,A3,An的正交点列,则BiBi1i(bi,ai),i1,2,3,n1,则有当n为偶数时,取A1(0,0),ai3,bi,i1,2,3,n1.由于B1,B2,B3,Bn是整点列,所以有iZ,i1,2,3,n1.等式(*)中左边是3的倍数,右边等于1,等式不成立,所以该点列A1,A2,A3,An无正交点列;当n为奇数时,取A1(0,0),a13,b12,ai3,bi,i2,3,n1,由于B1,B2,B3,Bn是整点列,所以有iZ,i1,2,3,n1.等式(*)中左边是3的倍数,右边等于1,等式不成立,所以该点列A1,A2,A3,An无正交点列综上所述,n5,nN,都存在无正交点列的有序整点列A(n).

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3