ImageVerifierCode 换一换
格式:DOC , 页数:1 ,大小:169KB ,
资源ID:170445      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-170445-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《教材分析与导入设计》2014年高中数学必修5(人教A版)第二章 《素材》2.4等比数列.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《教材分析与导入设计》2014年高中数学必修5(人教A版)第二章 《素材》2.4等比数列.doc

1、高考资源网() 您身边的高考专家斐波那契数列的奇妙性质前面我们已提到过斐波那契数列,它有一系列奇妙的性质,现简列以下几条,供读者欣赏. 1.从首项开始,我们依次计算每一项与它的后一项的比值,并精确到小数点后第四位:=1.000 0 =2.0 000=1.500 0 =1.666 7=1.600 0 =1.625 0=1.615 4 =1.619 0 =1.617 6 =1.618 2=1.618 0 =1.618 1如果将这一工作不断地继续下去,这个比值将无限趋近于某一个常数,这个常数位于1.618 0与1.618 1之间,它还能准确地用黄金数表示出来.2.我们在初中曾经遇到过杨辉三角形,如右

2、图所示,杨辉三角形中虚线上的数的和恰好组成斐波那契数列:3.在斐波那契数列中,请你验证下列简单的性质:前n项和Sn=a n+2-1,ana n+1-an-1a n-2=a 2n-1(n3),an-12+an2=an-1(n2),an-2an=a n-12-(-1)n(n3).据载首先是由19世纪法国数学家吕卡将级数Un:1,1,2,3,5,8,13,21,34,.U n+1=Un+Un-1命名为斐波那契级数,它是一种特殊的线性递归数列,在数学的许多分支中有广泛应用.1680年意大利法国学者卡西尼发现该级数的重要关系式U n+1U n-1-Un2=(-1)n.1730年法国数学家棣莫弗给出其通项表达式,19世纪初另一位法国数学家比内首先证明了这一表达式,现在称为之为比内公式.世界上有关斐波那契数列的研究文献多得惊人.斐波那契数列不仅是在初等数学中引人入胜,而且它的理论已经广泛应用,特别是在数列、运筹学及优化理论方面为数学家们展开了一片施展才华的广阔空间.- 1 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3