1、强化训练10数列求和及综合应用大题备考第二次作业12022湖南岳阳二模数列an满足a11,4anan113anan1.(1)求a2,a3;(2)证明是等差数列,并求an的通项公式22022广东潮州二模已知数列an的前n项和为Sn,且Sn1an.(1)求数列an的通项公式;(2)设bn,求数列bn的前n项和Tn.3.2022湖北十堰三模已知数列an满足a13a25a3(2n1)an(n1)3n1.(1)求an的通项公式;(2)在an和an1之间插入n个数,使这n2个数构成等差数列,记这个等差数列的公差为dn,求数列的前n项和Tn.42022山东临沂三模已知数列an,bn的前n项和分别是An,Bn
2、,若a11,an12an1,Bnn23n.(1)求an,bn的通项公式;(2)定义a*b,记cnan*bn,求数列cn的前n项和Tn.强化训练10数列求和及综合应用1解析:(1)由a11,4anan113anan1,4a213a2,a2,4a2a313a2a3,a3;(2)证明:由已知得,an12,又1,是以1为首项,2为公差的等差数列,2n1,解得:an.2解析:(1)当n1时,S11a1,所以a1,当n2时,Sn1an,Sn11an1,由得ananan1,即(n2),所以an是首项为,公比为的等比数列,故an()n.(2)由(1)得bn,所以Tn1.3解析:(1)因为a13a25a3(2n
3、1)an(n1)3n1,当n1时a11,当n2时,a13a25a3(2n3)an1(n2)3n11,得(2n1)an(n1)3n1(n2)3n11(2n1)3n1(n2).所以an3n1(n2).又因为当n1时,上式也成立,所以an的通项公式为an3n1.(2)由题可知dn,得,则Tn,Tn,得Tn1()1,解得Tn.4解析:(1)由an12an1,可得an112(an1),所以an1是以a112为首项,以2为公比的等比数列所以an12n,即an2n1,又Bnn23n,所以Bn1(n1)23(n1),(n2)所以bnBnBn12n2,(n2),b1B14满足上式,所以bn2n2.(2)由anbn2n2n3,当n3时,anbn0,anbn;当n3时,anbn0,an3时,TnAnA3B32n12n11182n1n5,综上,Tn.6