1、 高考资源网() 您身边的高考专家专题强化训练(十七)数列12019唐山摸底已知数列an的前n项和为Sn,Sn.(1)求an;(2)若bn(n1)an,且数列bn的前n项和为Tn,求Tn.解:(1)由已知可得,2Sn3an1,所以2Sn13an11(n2),得,2(SnSn1)3an3an1,化简得an3an1(n2),在中,令n1可得,a11,所以数列an是以1为首项,3为公比的等比数列,从而有an3n1.(2)bn(n1)3n1,Tn030131232(n1)3n1,则3Tn031132233(n1)3n.得,2Tn3132333n1(n1)3n(n1)3n.所以Tn.22019安徽示范高
2、中设数列an的前n项和为Sn,且满足Sn2an,n1,2,3,.数列bn满足b11,且bn1bnan.(1)求数列bn的通项公式;(2)设cnn(3bn),数列cn的前n项和为Tn,求Tn.解:(1)n1时,a1S1a1a12,a11.Sn2an,即anSn2,an1Sn12.两式相减得an1anSn1Sn0,即an1anan10,故有2an1an,由Sn2an,知an0,(nN*)an是首项为1,公比为的等比数列,其通项公式为ann1.bn1bnan(n1,2,3,),bn1bnn1,b2b11,b3b2,b4b32,bnbn1n2(n2,3,)将这n1个等式相加得,bnb112n22n2.
3、又b11,bn3n2(n2,3,),当n1时也满足上式,bn3n2(nN*)(2)cnn(3bn)2nn1,Tn202132(n1)n2nn1Tn212233(n1)n1nn得,Tn2012n12nn(nN*),Tn44nn8(84n)(n1,2,3,)32019洛阳统考已知等差数列an的公差d0,若a3a922,且a5,a8,a13成等比数列(1)求数列an的通项公式;(2)设bn,求数列bn的前n项和Sn.解:(1)设数列an的首项为a1,依题意,解得a11,d2,数列an的通项公式为an2n1.(2)bn11,Sn111n.42019石家庄质检已知an是首项为1的等比数列,各项均为正数,
4、且a2a312.(1)求数列an的通项公式;(2)设bn,求数列bn的前n项和Sn.解:(1)设an的公比为q,由a2a312及a11,得qq212,解得q3或q4.因为an的各项均为正数,所以q0,所以q3,所以an3n1.(2)bn,所以Sn.52019济南质量评估已知数列an是递增的等差数列,满足a2a3a415,a2是a1和a5的等比中项(1)求数列an的通项公式;(2)设bn,求数列bn的前n项和Sn.解:(1)设数列an的公差为d,由a2a3a415得a35,由a2是a1和a5的等比中项,得aa1a5,所以(5d)2(52d)(52d),解得d0或d2,因为数列an为递增数列,所以
5、d2.又a35,所以a11,所以an2n1.(2)bn,所以Sn.62019郑州质量预测一已知数列an为等比数列,首项a14,数列bn满足bnlog2an,且b1b2b312.(1)求数列an的通项公式;(2)令cnan,求数列cn的前n项和Sn.解:(1)由bnlog2an和b1b2b312得log2(a1a2a3)12,a1a2a3212.设等比数列an的公比为q,a14,a1a2a344q4q226q3212,计算得q4.an44n14n.(2)由(1)得bnlog24n2n,cn4n4n4n.设数列的前n项和为An,则An1,设数列4n的前n项和为Bn,则Bn(4n1),Sn(4n1)
6、72019长沙四校一模已知Sn是等比数列an的前n项和,a3,S3.(1)求数列an的公比;(2)对于数列Sn中任意连续的三项,按照某种顺序排列,是否成等差数列?解:(1)设等比数列an的公比为q(q0),由a3,得a1,a2.由S3,得a1a2a3,所以,解得q1或q.(2)当q1时,a1,Snn,Sn1(n1),Sn2(n2),2Sn1SnSn2,即Sn,Sn1,Sn2成等差数列,所以当q1时,数列Sn中任意连续的三项Sn,Sn1,Sn2成等差数列当q时,a12,Sn,Sn1,Sn2,SnSn1n,2Sn2n,所以2Sn2SnSn1,即Sn,Sn2,Sn1成等差数列,所以当q时,数列Sn中
7、任意连续的三项Sn,Sn1,Sn2,按照顺序Sn,Sn2,Sn1排列,成等差数列82019河北九校联考已知an是各项都为正数的数列,其前n项和为Sn,且Sn为an与的等差中项(1)求数列an的通项公式;(2)设bn,求数列bn的前n项和Tn.解:(1)由题意知,2Snan,即2Snana1,当n1时,由式可得S11;当n2时,anSnSn1,代入式,得2Sn(SnSn1)(SnSn1)21,整理得SS1.所以S是首项为1,公差为1的等差数列,S1n1n.因为an的各项都为正数,所以Sn,所以anSnSn1(n2),又a1S11,所以an.(2)bn(1)n(),当n为奇数时,Tn1(1)()()();当n为偶数时,Tn1(1)()()().所以bn的前n项和Tn(1)n. 高考资源网版权所有,侵权必究!