1、中考数学天天练总试题周汇总难度: 考点:二次函数综合题。试题详细答案难度: 考点:翻折变换(折叠问题);二次函数的最值;全等三角形的判定与性质;正方形的性质如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH(1)求证:APB=BPH;(2)当点P在边AD上移动时,PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由试题详细答案难度: 考点
2、:二次函数综合题如图,抛物线 的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0)(1)求抛物线的解析式;(2)试探究ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求MBC的面积的最大值,并求出此时M点的坐标试题详细答案难度: 考点:二次函数综合题在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BEDB交x轴于点E(1)求经过点D、B、E的抛物线的解析式;(2)将DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点
3、B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使PFE为等腰三角形,求Q点的坐标试题详细答案难度: 考点:动点问题的函数图象;一次函数综合题如图1,AD分别在x轴和y轴上,CDx轴,BCy轴点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts已知S与t之间的函数关系如图2中折线段OEFGHI所示(1)求AB两点的坐标;(2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式试题详细答案18