收藏 分享(赏)

2013中考数学压轴题 动态几何题型精选解析(一).doc

上传人:高**** 文档编号:1662908 上传时间:2024-06-09 格式:DOC 页数:2 大小:149.50KB
下载 相关 举报
2013中考数学压轴题 动态几何题型精选解析(一).doc_第1页
第1页 / 共2页
2013中考数学压轴题 动态几何题型精选解析(一).doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2013中考数学压轴题动态几何题型精选解析(一)例题 如图,在平面直角坐标系中,直线y=x+1分别与两坐标轴交于B,A两点,C为该直线上的一动点,以每秒1个单位长度的速度从点A开始沿直线BA向上移动,作等边CDE,点D和点E都在x轴上,以点C为顶点的抛物线y=a(xm)2+n经过点EM与x轴、直线AB都相切,其半径为3(1)a(1)求点A的坐标和ABO的度数;(2)当点C与点A重合时,求a的值;(3)点C移动多少秒时,等边CDE的边CE第一次与M相切?思路分析:(1)已知直线AB的解析式,令解析式的x=0,能得到A点坐标;令y=0,能得到B点坐标;在RtOAB中,知道OA、OB的长,用正切函数

2、即可得到ABO的读数(2)当C、A重合时,就告诉了点C的坐标,然后结合OC的长以及等边三角形的特性求出OD、OE的长,即可得到D、E的坐标,利用待定系数即可确定a的值(3)此题需要结合图形来解,首先画出第一次相切时的示意图(详见解答图);已知的条件只有圆的半径,那么先连接圆心与三个切点以及点E,首先能判断出四边形CPMN是正方形,那么CP与M的半径相等,只要再求出PE就能进一步求得C点坐标;那么可以从PE=EQ,即RtMEP入手,首先CED=60,而MEP=MEQ,易求得这两个角的度数,通过解直角三角形不难得到PE的长,即可求出PE及点C、E的坐标然后利用C、E的坐标确定a的值,进而可求出AC

3、的长,由此得解解:(1)当x=0时,y=1;当y=0时,x=,OA=1,OB=,A的坐标是(0,1)ABO=30(2)CDE为等边,点A(0,1),tan30=,D的坐标是(,0),E的坐标是(,0),把点A(0,1),D(,0),E(,0)代入 y=a(xm)2+n,解得:a=3(3)如图,设切点分别是Q,N,P,连接MQ,MN,MP,ME,过点C作CHx轴,H为垂足,过A作AFCH,F为垂足CDE是等边三角形,ABO=30BCE=90,ECN=90CE,AB分别与M相切,MPC=CNM=90,四边形MPCN为矩形,MP=MN四边形MPCN为正方形6分MP=MN=CP=CN=3(1)a(a0

4、)EC和x轴都与M相切,EP=EQNBQ+NMQ=180,PMQ=60EMQ,=30,在RtMEP中,tan30=,PE=(3)aCE=CP+PE=3(1)a+(3)a=2aDH=HE=a,CH=3a,BH=3a,OH=3a,OE=4aE(4a,0)C(3a,3a)设二次函数的解析式为:y=a(x+3a+)23aE在该抛物线上a(4a+3a+)23a=0得:a2=1,解之得a1=1,a2=1a0,a=1AF=2,CF=2,AC=4点C移动到4秒时,等边CDE的边CE第一次与M相切点评:这道二次函数综合题目涉及的知识点较多,有:待定系数法确定函数解析式、等边三角形的性质、切线长定理等重点知识难度在于涉及到动点问题,许多数值都不是具体值;(3)题中,正确画出草图、贯彻数形结合的解题思想是关键2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3