ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:51KB ,
资源ID:165404      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-165404-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020届高考数学(江苏专用)二轮复习综合仿真练(五) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020届高考数学(江苏专用)二轮复习综合仿真练(五) WORD版含答案.doc

1、综合仿真练(五)1如图,在四棱锥PABCD中,ABCD,ABAD,CD2AB,平面PAD底面ABCD,PAAD,E和F分别为CD和PC的中点,求证:(1)PA底面ABCD;(2)BE平面PAD;(3)平面BEF平面PCD.证明:(1)因为平面PAD底面ABCD,且PA垂直于这两个平面的交线AD,所以PA底面ABCD.(2)因为ABCD,CD2AB,E为CD的中点,所以ABDE,且ABDE.所以四边形ABED为平行四边形所以BEAD.又因为BE平面PAD,AD平面PAD,所以BE平面PAD.(3)因为ABAD,且四边形ABED为平行四边形,所以BECD,ADCD.由(1)知PA底面ABCD,所以

2、PACD,又ADPAA,所以CD平面PAD.所以CDPD.因为E和F分别是CD和PC的中点,所以PDEF,所以CDEF.又因为CDBE,EFBEE,所以CD平面BEF.又CD平面PCD,所以平面BEF平面PCD.2(2019海安中学模拟)已知ABC内接于单位圆,且(1tan A)(1tan B)2,(1)求角C;(2)求ABC面积的最大值解:(1)(1tan A)(1tan B)2tan Atan B1tan Atan B,tan Ctan(AB)1,C.(2)ABC的外接圆为单位圆,其半径R1由正弦定理可得c2Rsin C,由余弦定理可得c2a2b22abcos C,代入数据可得2a2b2a

3、b2abab(2)ab,ab,ABC的面积Sabsin C,ABC面积的最大值为.3在平面直角坐标系xOy中,已知椭圆C:1的左顶点为A,右焦点为F,P,Q为椭圆C上两点,圆O:x2y2r2(r0)(1)若PFx轴,且满足直线AP与圆O相切,求圆O的方程;(2)若圆O的半径为,点P,Q满足kOPkOQ,求直线PQ被圆O截得的弦长的最大值. 解:(1)因为椭圆C的方程为1,所以A(2,0),F(1,0)因为PFx轴,所以P,根据对称性,可取P,则直线AP的方程为y(x2),即x2y20.由圆O与直线AP相切,得r,所以圆O的方程为x2y2.(2)易知圆O的方程为x2y23.当PQx轴时,kOPk

4、OQk,所以kOP,xP,此时得直线PQ被圆O截得的弦长为2.当PQ与x轴不垂直时,设直线PQ的方程为ykxb,P(x1,y1),Q(x2,y2)(x1x20),首先由kOPkOQ,得3x1x24y1y20,即3x1x24(kx1b)(kx2b)0,所以(34k2)x1x24kb(x1x2)4b20.(*)联立消去y,得(34k2)x28kbx4b2120,则x1x2,x1x2,将其代入(*)式,化简得2b24k23.由于圆心O到直线PQ的距离d,所以直线PQ被圆O截得的弦长l2,故当k0时,l有最大值为.综上,因为2,所以直线PQ被圆O截得的弦长的最大值为.4(2019如皋中学模拟)如图,长

5、方形材料ABCD中,已知AB2,AD4.点P为材料ABCD内部一点,PEAB于E,PFAD于F,且PE1,PF,现要在长方形材料ABCD中裁剪出四边形材料AMPN,满足MPN150,点M,N分别在边AB,AD上(1)设FPN,试将四边形材料AMPN的面积S表示为的函数,并指明的取值范围;(2)试确定点N在AD上的位置,使得四边形材料AMPN的面积S最小,并求出其最小值解:(1)在直角NFP中,因为PF,FPN,所以NFtan ,所以SAPNNAPF(1tan ).在直角MEP中,因为PE1,EPM,所以MEtanSAPMMAPE1.所以SSAPNSAPMtan tan,(2)因为Stan ta

6、ntan 1tan ,由,得t1,4,所以S2 2.当且仅当t时,即tan 时等号成立此时,AN,Smin2.答:当AN时,四边形材料AMPN的面积S最小,最小值为2.5设fk(n)为关于n的k(kN)次多项式数列an的首项a11,前n项和为Sn.对于任意的正整数n,anSnfk(n)恒成立(1)若k0,求证:数列an是等比数列;(2)试确定所有的自然数k,使得数列an能成等差数列解:(1)证明:若k0,则fk(n)即f0(n)为常数,不妨设f0(n)c(c为常数)因为anSnfk(n)恒成立,所以a1S1c,即c2a12.所以anSn2,当n2时,an1Sn12,得2anan10(n2,nN

7、*)若an0,则an10,a10,与已知矛盾,所以an0(nN*)故数列an是首项为1,公比为的等比数列. (2)()若k0,由(1)知,不符题意,舍去. ()若k1,设f1(n)bnc(b0,b,c为常数),所以anSnbnc,当n2时,an1Sn1b(n1)c,得2anan1b(n2,nN*)要使数列an是公差为d(d为常数)的等差数列,必须有anbd(常数),而a11,故an只能是常数数列,通项公式为an1(nN*),故当k1时,数列an能成等差数列,其通项公式为an1(nN*),此时f1(n)n1.()若k2,设f2(n)an2bnc(a0,a,b,c是常数),所以anSnan2bnc

8、,当n2时,an1Sn1a(n1)2b(n1)c,得2anan12anba(n2,nN*)要使数列an是公差为d(d为常数)的等差数列,必须有an2anbad,且d2a,考虑到a11,所以an1(n1)2a2an2a1(nN*)故当k2时,数列an能成等差数列,其通项公式为an2an2a1(nN*),此时f2(n)an2(a1)n12a(a为非零常数). ()当k3时,若数列an能成等差数列,则anSn的表达式中n的最高次数为2,故k3时,数列an不能成等差数列综上得,当且仅当k1或2时,数列an能成等差数列6已知R,函数f (x)exex(xln xx1)的导函数为g(x)(1)求曲线yf

9、(x)在x1处的切线方程;(2)若函数g(x)存在极值,求的取值范围;(3)若x1时,f (x)0恒成立,求的最大值解:(1)因为f(x)exeln x,所以曲线yf(x)在x1处的切线的斜率为f(1)0,又f(1)0,所以切线方程为y0. (2)g(x)exeln x(x0),g(x)ex.当0时,g(x)0恒成立,从而g(x)在(0,)上单调递增,故此时g(x)无极值. 当0时,设h(x)ex,则h(x)ex0恒成立,所以h(x)在(0,)上单调递增. 当0e时,h(1)e0,hee0,且h(x)是(0,)上的连续函数,因此存在唯一的x0,使得h(x0)0.当e时,h(1)e0,h()e1

10、0,且h(x)是(0,)上的连续函数,因此存在唯一的x01,),使得h(x0)0.综上,当0时,存在唯一的x00,使得h(x0)0. 且当0xx0时,h(x)0,即g(x)0,当xx0时,h(x)0,即g(x)0,所以g(x)在(0,x0)上单调递减,在(x0,)上单调递增,因此g(x)在xx0处有极小值所以当函数g(x)存在极值时,的取值范围是(0,)(3)g(x)f(x)exeln x(x0),g(x)ex.若g(x)0恒成立,则有xex恒成立设(x)xex(x1),则(x)(x1)ex0恒成立,所以(x)在1,)上单调递增,从而(x)(1)e,即e.于是当e时,g(x)在1,)上单调递增,此时g(x)g(1)0,即f(x)0,从而f(x)在1,)上单调递增所以f (x)f (1)0恒成立当e时,由(2)知,存在x0(1,),使得g(x)在(0,x0)上单调递减,即f(x)在(0,x0)上单调递减所以当1xx0时,f(x)f(1)0,于是f(x)在1,x0)上单调递减,所以f(x0)f(1)0.这与x1时,f(x)0恒成立矛盾因此e,即的最大值为e.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3