ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:920.69KB ,
资源ID:16536      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-16536-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018版高考数学(文)(北师大版)大一轮复习讲义教师版文档 第二章 函数概念与基本初等函数I 2.8 WORD版含答案.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018版高考数学(文)(北师大版)大一轮复习讲义教师版文档 第二章 函数概念与基本初等函数I 2.8 WORD版含答案.docx

1、1函数的零点(1)函数零点的定义函数yf(x)的图像与横轴的交点的横坐标称为这个函数的零点(2)几个等价关系方程f(x)0有实数根函数yf(x)的图像与x轴有交点函数yf(x)有零点(3)函数零点的判定(零点存在性定理)若函数yf(x)在闭区间a,b上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)f(b)0,则在区间(a,b)内,函数yf(x)至少有一个零点,即相应的方程f(x)0在区间(a,b)内至少有一个实数解2二分法对于在区间a,b上连续不断且f(a)f(b)0)的图像与零点的关系000)的图像与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数210【知识拓展

2、】1有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号(3)连续不断的函数图像通过零点时,函数值可能变号,也可能不变号2三个等价关系方程f(x)0有实数根函数yf(x)的图像与x轴有交点函数yf(x)有零点【思考辨析】判断下列结论是否正确(请在括号中打“”或“”)(1)函数的零点就是函数的图像与x轴的交点()(2)函数yf(x)在区间(a,b)内有零点(函数图像连续不断),则f(a)f(b)0.()(3)只要函数有零点,我们就可以用二分法求出零点的近似值()(4)二次函数yax2bxc(a0

3、)在b24ac0时没有零点()(5)若函数f(x)在(a,b)上单调且f(a)f(b)0,则函数f(x)在a,b上有且只有一个零点()1(教材改编)函数f(x)()x的零点个数为()A0 B1 C2 D3答案B解析f(x)是增函数,又f(0)1,f(1),f(0)f(1)0,f(x)有且只有一个零点2下列函数中,既是偶函数又存在零点的是()Aycos x Bysin xCyln x Dyx21答案A解析由于ysin x是奇函数;yln x是非奇非偶函数;yx21是偶函数但没有零点;只有ycos x是偶函数又有零点3(2016长春检测)函数f(x)ln xx2的零点所在的区间是()A(,1) B

4、(1,2) C(2,e) D(e,3)答案C解析因为f()e20,f(1)20,f(2)ln 20,所以f(2)f(e)0,所以函数f(x)ln xx2的零点所在区间是(2,e)4函数f(x)2x|log0.5 x|1的零点个数为_答案2解析由f(x)0,得|log0.5x|x,作出函数y|log0.5x|和yx的图像,由上图知两函数图像有2个交点,故函数f(x)有2个零点5函数f(x)ax12a在区间(1,1)上存在一个零点,则实数a的取值范围是_答案解析函数f(x)的图像为直线,由题意可得f(1)f(1)0,(3a1)(1a)0,解得a1,实数a的取值范围是.题型一函数零点的确定命题点1确

5、定函数零点所在区间例1(1)(2016长沙调研)已知函数f(x)ln xx2的零点为x0,则x0所在的区间是()A(0,1) B(1,2) C(2,3) D(3,4)(2)(2016济南模拟)设函数yx3与y()x2的图像的交点为(x0,y0),若x0(n,n1),nN,则x0所在的区间是_答案(1)C(2)(1,2)解析(1)f(x)ln xx2在(0,)上为增函数,又f(1)ln 11ln 120,f(2)ln 200,x0(2,3),故选C.(2)令f(x)x3()x2,则f(x0)0,易知f(x)为增函数,且f(1)0,x0所在的区间是(1,2)命题点2函数零点个数的判断例2(1)函数

6、f(x)的零点个数是_(2)若定义在R上的偶函数f(x)满足f(x2)f(x),当x0,1时,f(x)x,则函数yf(x)log3|x|的零点个数是()A多于4 B4 C3 D2答案(1)2(2)B解析(1)当x0时,令x220,解得x(正根舍去),所以在(,0上有一个零点;当x0时,f(x)20恒成立,所以f(x)在(0,)上是增函数又因为f(2)2ln 20,所以f(x)在(0,)上有一个零点,综上,函数f(x)的零点个数为2.(2)由题意知,f(x)是周期为2的偶函数在同一坐标系内作出函数yf(x)及ylog3|x|的图像,如图,观察图像可以发现它们有4个交点,即函数yf(x)log3|

7、x|有4个零点思维升华(1)确定函数零点所在区间,可利用零点存在性定理或数形结合法(2)判断函数零点个数的方法:解方程法;零点存在性定理、结合函数的性质;数形结合法:转化为两个函数图像的交点个数(1)已知函数f(x)log2x,在下列区间中,包含f(x)零点的区间是()A(0,1) B(1,2)C(2,4) D(4,)(2)函数f(x)xcos x2在区间0,4上的零点个数为()A4 B5 C6 D7答案(1)C(2)C解析(1)因为f(1)6log2160,f(2)3log2220,f(4)log240,所以函数f(x)的零点所在区间为(2,4)(2)由f(x)xcos x20,得x0或co

8、s x20.又x0,4,所以x20,16由于cos(k)0(kZ),而在k(kZ)的所有取值中,只有,满足在0,16内,故零点个数为156.题型二函数零点的应用例3(1)函数f(x)2xa的一个零点在区间(1,2)内,则实数a 的取值范围是()A(1,3) B(1,2)C(0,3) D(0,2)(2)已知函数f(x)|x23x|,xR,若方程f(x)a|x1|0恰有4个互异的实数根,则实数a的取值范围是_答案(1)C(2)(0,1)(9,)解析(1)因为函数f(x)2xa在区间(1,2)上单调递增,又函数f(x)2xa的一个零点在区间(1,2)内,则有f(1)f(2)0,所以(a)(41a)0

9、,即a(a3)0,即a210a90,解得a9.又由图像得a0,0a9.引申探究本例(2)中,若f(x)a恰有四个互异的实数根,则a的取值范围是_答案(0,)解析作出y1|x23x|,y2a的图像如下:当x时,y1;当x0或x3时,y10,由图像易知,当y1|x23x|和y2a的图像有四个交点时,0a.思维升华已知函数零点情况求参数的步骤及方法(1)步骤:判断函数的单调性;利用零点存在性定理,得到参数所满足的不等式(组);解不等式(组),即得参数的取值范围(2)方法:常利用数形结合法(1)(2016枣庄模拟)已知函数f(x)x2xa(a0)在区间(0,1)上有零点,则a的取值范围为_(2)(20

10、15湖南)若函数f(x)|2x2|b有两个零点,则实数b的取值范围是_答案(1)(2,0)(2)(0,2)解析(1)ax2x在(0,1)上有解,又yx2x(x)2,函数yx2x,x(0,1)的值域为(0,2),0a2,2a0.(2)由f(x)|2x2|b0,得|2x2|b.在同一平面直角坐标系中画出y|2x2|与yb的图像,如图所示则当0b2时,两函数图像有两个交点,从而函数f(x)|2x2|b有两个零点题型三二次函数的零点问题例4已知f(x)x2(a21)x(a2)的一个零点比1大,一个零点比1小,求实数a的取值范围解方法一设方程x2(a21)x(a2)0的两根分别为x1,x2(x1x2),

11、则(x11)(x21)0,x1x2(x1x2)10,由根与系数的关系,得(a2)(a21)10,即a2a20,2a1.方法二函数图像大致如图,则有f(1)0,即1(a21)a20,2a1.故实数a的取值范围是(2,1)思维升华解决与二次函数有关的零点问题:(1)利用一元二次方程的求根公式;(2)利用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图像列不等式组(2016临沂一模)若函数f(x)(m2)x2mx(2m1)的两个零点分别在区间(1,0)和区间(1,2)内,则m的取值范围是_答案解析依题意,结合函数f(x)的图像分析可知m需满足即解得m0且a1)有两个零点,则实数a的取

12、值范围是_(2)若关于x的方程22x2xaa10有实根,则实数a的取值范围为_思想方法指导(1)函数零点个数可转化为两个函数图像的交点个数,利用数形结合求解参数范围(2)“af(x)有解”型问题,可以通过求函数yf(x)的值域解决解析(1)函数f(x)axxa(a0且a1)有两个零点,即方程axxa0有两个根,即函数yax与函数yxa的图像有两个交点当0a1时,图像如图所示,此时有两个交点实数a的取值范围为(1,)(2)由方程,解得a,设t2x(t0),则a(t1)2(t1),其中t11,由基本不等式,得(t1)2,当且仅当t1时取等号,故a22.答案(1)(1,)(2)(,221设f(x)l

13、n xx2,则函数f(x)的零点所在的区间为()A(0,1) B(1,2)C(2,3) D(3,4)答案B解析f(1)ln 11210,f(1)f(2)1时,由f(x)1log2x0,解得x,又因为x1,所以此时方程无解综上,函数f(x)的零点只有0,故选D.3已知三个函数f(x)2xx,g(x)x2,h(x)log2xx的零点依次为a,b,c,则()Aabc BacbCbac Dcab答案B解析方法一由于f(1)10且f(x)为R上的递增函数故f(x)2xx的零点a(1,0)g(2)0,g(x)的零点b2.h10,且h(x)为(0,)上的增函数,h(x)的零点c,因此acb.方法二由f(x)

14、0,得2xx;由h(x)0,得log2xx,作出函数y2x,ylog2x和yx的图像(如图)由图像易知a0,0c1,而b2,故ac0)的解的个数是()A1 B2 C3 D4答案B解析(数形结合法)a0,a211.而y|x22x|的图像如图,y|x22x|的图像与ya21的图像总有两个交点5已知函数f(x)则使方程xf(x)m有解的实数m的取值范围是()A(1,2) B(,2C(,1)(2,) D(,12,)答案D解析当x0时,xf(x)m,即x1m,解得m1;当x0时,xf(x)m,即xm,解得m2,即实数m的取值范围是(,12,)故选D.6已知xR,符号x表示不超过x的最大整数,若函数f(x

15、)a(x0)有且仅有3个零点,则实数a的取值范围是_答案,)解析当0x1时,f(x)aa;当1x2时,f(x)aa;当2x0的解集是_答案x|x0,即(4x22x6)02x2x30,解集为x|x18已知函数f(x)若函数g(x)f(x)m有3个零点,则实数m的取值范围是_答案(0,1)解析画出函数f(x)的图像,如图由于函数g(x)f(x)m有3个零点,结合图像得0m0时,f(x)2 015xlog2 015x,则在R上,函数f(x)零点的个数为_答案3解析函数f(x)为R上的奇函数,因此f(0)0,当x0时,f(x)2 015xlog2 015x在区间(0,)内存在一个零点,又f(x)为增函

16、数,因此在(0,)内有且仅有一个零点根据对称性可知函数在(,0)内有且仅有一解,从而函数f(x)在R上的零点的个数为3. 10.(2016衡水期中)若a1,设函数f(x)axx4的零点为m,函数g(x)logaxx4的零点为n,则的最小值为_答案1解析设F(x)ax,G(x)logax,h(x)4x,则h(x)与F(x),G(x)的交点A,B横坐标分别为m,n(m0,n0)因为F(x)与G(x)关于直线yx对称,所以A,B两点关于直线yx对称又因为yx和h(x)4x交点的横坐标为2,所以mn4.又m0,n0,所以()(2)(22 )1.当且仅当,即mn2时等号成立所以的最小值为1.11设函数f

17、(x)(x0)(1)作出函数f(x)的图像;(2)当0ab且f(a)f(b)时,求的值;(3)若方程f(x)m有两个不相等的正根,求m的取值范围解(1)如图所示(2)f(x)故f(x)在(0,1上是减函数,而在(1,)上是增函数由0ab且f(a)f(b),得0a1b且11,2.(3)由函数f(x)的图像可知,当0m1时,方程f(x)m有两个不相等的正根12关于x的二次方程x2(m1)x10在区间0,2上有解,求实数m的取值范围解显然x0不是方程x2(m1)x10的解,0x2时,方程可变形为1mx,又yx在(0,1上是减少的,在1,2上是增加的,yx在(0,2上的取值范围是2,),1m2,m1,故m的取值范围是(,1 13.已知yf(x)是定义域为R的奇函数,当x0,)时,f(x)x22x.(1)写出函数yf(x)的解析式;(2)若方程f(x)a恰有3个不同的解,求a的取值范围解(1)设x0,f(x)x22x.又f(x)是奇函数,f(x)f(x)x22x.f(x)(2)方程f(x)a恰有3个不同的解即yf(x)与ya的图像有3个不同的交点,作出yf(x)与ya的图像如图所示,故若方程f(x)a恰有3个不同的解只需1a1,故a的取值范围为(1,1)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3