收藏 分享(赏)

2010年高考数学 考点16不等式.doc

上传人:高**** 文档编号:1649955 上传时间:2024-06-09 格式:DOC 页数:12 大小:618.50KB
下载 相关 举报
2010年高考数学 考点16不等式.doc_第1页
第1页 / 共12页
2010年高考数学 考点16不等式.doc_第2页
第2页 / 共12页
2010年高考数学 考点16不等式.doc_第3页
第3页 / 共12页
2010年高考数学 考点16不等式.doc_第4页
第4页 / 共12页
2010年高考数学 考点16不等式.doc_第5页
第5页 / 共12页
2010年高考数学 考点16不等式.doc_第6页
第6页 / 共12页
2010年高考数学 考点16不等式.doc_第7页
第7页 / 共12页
2010年高考数学 考点16不等式.doc_第8页
第8页 / 共12页
2010年高考数学 考点16不等式.doc_第9页
第9页 / 共12页
2010年高考数学 考点16不等式.doc_第10页
第10页 / 共12页
2010年高考数学 考点16不等式.doc_第11页
第11页 / 共12页
2010年高考数学 考点16不等式.doc_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
资源描述

1、考点16 不等式 1.(2010安徽高考文科8)设x,y满足约束条件则目标函数z=x+y的最大值是( )(A)3 (B) 4 (C) 6 (D)8【命题立意】本题主要考查线性规划问题,考查考生的作图、运算求解能力。【思路点拨】由约束条件画可行域确定目标函数的最大值点计算目标函数的最大值【规范解答】选C约束条件表示的可行域是一个三角形区域,3个顶点分别是,目标函数在取最大值6,故C正确【方法技巧】解决线性规划问题,首先作出可行域,若为封闭区域(即几条直线围成的区域),则区域中的某个端点使目标函数取得最大或最小值 2.(2010福建高考文科5)若,且,则的最小值等于( )A.2 B.3 C.5 D

2、.9【命题立意】本题考查利用线性规划的方法求最值 【思路点拨】先画出不等式组表示的线性区域,再作出直线,平移,当其截距越小,的值越小【规范解答】选B不等式组所表示的平面区域如图阴影所示:作,平移至点位置时,取得最小值, 【方法技巧】本题可以采用多种解法,有些解法一反常规,颠覆视觉方法1(特殊点法):因为直线分别交于,当时,;当时,;当时,;所以当时,所以选 B方法2(反代入法):,把代入得:,所以有最小值3方法3(向量法):设,则,表示的是在方向上的投影,所以当在位置时取得最小值,所以当时,为最小值故应选 3.(2010浙江高考文科7)若实数x,y满足不等式组合,则x+y的最大值为( )(A)

3、9 (B) (C)1 (D)【命题立意】本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题【思路点拨】画出不等式组表示的平面区域,再利用图象求的最大值【规范解答】选A令,则,表示过可行域内点斜率为-1的直线在轴上的截距由图可知当向上平移使它过时,【方法技巧】(1)画可行域时:“直线定界、特殊点定域”;(2)寻找目标函数的最值时,应先指明它的几何意义,这样才能找到相应的最值 4.(2010天津高考文科2)设变量x,y满足约束条件则目标函数z=4x+2y的最大值为( )(A)12 (B)10 (C)8 (D)2【命题立意】考查线性规划的意义,二元一次不等式的最值

4、问题以及数形结合思想的应用【思路点拨】应用数形结合,画图分析求得最值【规范解答】选B在同一个坐标系中,画出直线的图像,作出可行域可知直线平行移动到直线的交点(2,1)处,目标函数z=4x+2y取的最大值10.【方法技巧】 线性规划问题的关键是找准最优点,画图失误或求点失误是常见的失误点,解决最优解问题也将各个边界点代入验证,然后寻找合适点 5.(2010山东高考理科10)设变量x、y满足约束条件,则目标函数的最大值和最小值分别为( )(A)3,11(B)3, 11(C )11, 3(D)11,3【命题立意】本题考查不等式中的线性规划知识及数形结合的数学思想、考查了考生的推理论证能力和运算求解能

5、力.【思路点拨】先画出不等式组所表示的平面区域,再求解.【规范解答】选A 画出平面区域如图所示:可知当直线平移到点(5,3)时,目标函数取得最大值3;当直线平移到点(3,5)时,目标函数取得最小值-11,故选A. 6.(2010浙江高考理科7)若实数,满足不等式组且的最大值为9,则实数( )(A) (B) (C)1 (D)2【命题立意】本题考查线性规划的相关知识,考查数形结合思想【思路点拨】画出平面区域,利用的最大值为9,确定区域的边界【规范解答】选C令,则,表示斜率为-1的直线在轴上的截距当最大值为9时,过点A,因此过点A,所以【方法技巧】画平面区域时“直线定界、特殊点定域”7.(2010北

6、京高考理科7)设不等式组表示的平面区域为D,若指数函数y=的图像上存在区域D上的点,则a 的取值范围是( )(A)(1,3 (B )2,3 (C) (1,2 (D) 3, 【命题立意】本题考查平面区域,指数函数的相关知识【思路点拨】画出平面区域D,再观察的图象【规范解答】选A区域D如图所示,其中当恰过点A时,因此当时,的图像上存在区域D上的点【方法技巧】画区域D时可采用“直线定界、特殊点定域”的方法8.(2010福建高考理科8)设不等式组,所表示的平面区域是,平面区域与关于直线对称,对于中的任意A与中的任意点B,的最小值等于( ) A. B.4 C. D.2【命题立意】本题主要考查线性可行域的

7、表示, 并结合图像求解点到线距离的最小值.【思路点拨】画出可行域以及直线,要求的最小值即求到直线的最小值的2倍【规范解答】选B不等式组所表示的平面区域如图所示:则点 到的距离即为平面区域中任意点A到的最小距离,9.(2010江苏高考2)设x,y为实数,满足38,49,则的最大值是 【命题立意】本题考查不等式的基本性质,等价转化思想【思路点拨】【规范解答】,的最大值是27【答案】2710.(2010浙江高考文科16) 某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,

8、若一月至十月份销售总额至少达7000万元,则x的最小值 【命题立意】本题主要考察了用一元二次不等式解决实际问题的能力,属中档题【思路点拨】把一到十月份的销售总额求和,列出不等式,求解【规范解答】七月份:,八月份:所以一至十月份的销售总额为:,解得(舍)或,【答案】2011.(2010浙江高考文科15)若正实数,满足,则的最小值是 【命题立意】本题主要考察了用基本不等式解决最值问题的能力 ,以及换元思想和简单一元二次不等式的解法,属中档题【思路点拨】本题可利用均值不等式构造出关于的不等式,解出的范围【规范解答】运用基本不等式,令,可得,注意到t0,解得t,故xy的最小值为18【答案】18【方法技

9、巧】均值不等式有两个常用变形:(1)当和为定值时,积有最大值,即;(2)当积为定值时,和有最小值,即12.(2010山东高考文科4)已知,且满足,则xy的最大值为 .【命题立意】本题考查均值定理,考查考生运用基本不等式运算求解能力.【思路点拨】根据,且,【规范解答】,且,由均值不等式有,解得,当且仅当,即时,等号成立。所以xy的最大值为3 。13.(2010山东高考理科14)若对任意,恒成立,则的取值范围是 【命题立意】本题考查了利用基本不等式求最值及不等式恒成立问题以及参数问题的求解,考查了考生的转化能力、和运算求解能力【思路点拨】将恒成立问题转化为最值问题.【规范解答】因为,所以(当且仅当

10、时取等号),所以有,即的最大值为,故 . 【答案】【方法技巧】1、不等式的恒成立问题与函数最值有密切的关系,解决不等式恒成立问题,通常先分离参数,再转化为最值问题来解:恒成立;恒成立2、高次函数或非基本初等函数的最值问题,通常采用导数法解决.14.(2010安徽高考文科15)若,则下列不等式对一切满足条件的恒成立的是 (写出所有正确命题的编号); ; ; ; 【命题立意】本题主要考查均值定理,考查考生变形转化的能力【思路点拨】可以利用特值排除,结合均值定理变形转化求解【规范解答】令,排除、;由,命题正确;由,命题正确;由,命题正确【答案】15.(2010陕西高考文科4)A设x,y满足约束条件,

11、则目标函数z3xy的最大值为 .【命题立意】本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函数的几何意义是解答好本题的关键,属中档题【思路点拨】做出可行域做出目标函数3xy0平移目标函数线结论【规范解答】做出可行域由当直线z3xy过点A时,z取到最大5.【答案】16.(2010北京高考文科)若点p(m,3)到直线的距离为4,且点p在不等式3表示的平面区域内,则m= 【命题立意】本题考查了点到直线距离与线性规划的知识【思路点拨】先利用点到直线的距离求出,再把所得点P的坐标代入到不等式中去验证【规范解答】点p(m,3)到直线的距离为4,解得或又因为点p在不等式3表示的平面区域内,所以【

12、答案】-3【方法技巧】判断点是否在某平面区域内,只需把点的坐标代入到不等式中看是否成立即可17.(2010安徽高考理科13)设满足约束条件,若目标函数的最大值为8,则的最小值为_【命题立意】本题主要考查线性规划问题和均值定理,考查考生的作图、运算求解能力【思路点拨】由约束条件画可行域 确定目标函数的最大值点计算的值 利用均值定理计算的最小值【规范解答】 已知满足约束条件,其可行域是一个四边形,4个顶点是,易见目标函数在取最大值8,所以,即,当且仅当时,等号成立所以的最小值为4【答案】4【方法技巧】线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域),则目标函数的最大或最小值在区域的

13、端点或边界处取得18.(2010辽宁高考理科14)已知且,则的取值范围是_(答案用区间表示)【命题立意】本题考查线性归划问题【思路点拨】找出使z取最大最小值的最优解求出最大值、最小值写出答案做出可行域【规范解答】做出可行域(如图),将目标函数z=2x-3y变形为它表示与平行,截距是的一族平行直线,当它经过点A时,截距最大,此是z取得最小值;当经过点B时,截距最小,此时z最大由由z=2xy的取值范围是(3,8)【答案】(3,8)【方法技巧】本题还可设,利用不等式求解注意:不要先分别求、的范围再求的范围,这样会将范围扩大,导致结果错误19.(2010陕西高考理科4)铁矿石A和B的含铁率,冶炼每万吨

14、铁矿石的的排放量b及每万吨铁矿石的价格c如下表:b(万吨)(百万元)A50%13B70%056某冶炼厂至少要生产1.9(万吨)铁,若要求的排放量不超过2(万吨),则购买铁矿石的最少费用为_ (百万元)【命题立意】本题考查不等式中的线性规划知识的应用,画出平面区域与正确理解目标函数的几何意义是解答好本题的关键属中档题【思路点拨】设购买铁矿石A、B分别为万吨线性约束条件最优解结论【规范解答】设购买铁矿石A、B分别为万吨,购买铁矿石的费用为z(百万元),则,目标函数,画出可行域可知,当目标函数过点P(1,2)时,z取到最小值15.【答案】1520.(2010广东高考文科19)某营养师要为某个儿童预定

15、午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?【命题立意】本题为应用题,考察简单的线性规划问题以及建立数学模型的方法.【思路点拨】建立目标函数列出约束条件画出可行域求目标函数的最值.【规范解答】设该儿童分别预定个单位的午餐和晚餐,共需元,则.

16、约束条件为 即作出可行域如图:所以,当时,花费最少,为元.答:应当为该儿童分别预定4个午餐和3个晚餐.【方法技巧】线性规划的应用问题,应从目标函数入手,列出约束条件,再根据约束条件画出可行域,这样思路更清晰.21.(2010广东高考理科19) 某营养师要为某个儿童预定午餐和晚餐。已知一个单位的午餐含12个单位的碳水化合物6个单位蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?【命题立意】本题为应用题,考察简单的线性规划问题以及建立数学模型的方法.【思路点拨】建立目标函数列出约束条件画出可行域求目标函数的最值.【规范解答】设该儿童分别预定个单位的午餐和晚餐,共需元,则.可行域为 即作出可行域如图:所以,当时,花费最少,为元.答:应当为该儿童分别预定4个午餐和3个晚餐.【方法技巧】线性规划的应用问题,应从目标函数入手,列出约束条件,再根据约束条件画出可行域,这样思路更清晰. - 12 -

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3