收藏 分享(赏)

2023年高考数学一轮复习 点点练15 解三角形及应用(含解析)文.docx

上传人:高**** 文档编号:1649683 上传时间:2024-06-09 格式:DOCX 页数:11 大小:86.14KB
下载 相关 举报
2023年高考数学一轮复习 点点练15 解三角形及应用(含解析)文.docx_第1页
第1页 / 共11页
2023年高考数学一轮复习 点点练15 解三角形及应用(含解析)文.docx_第2页
第2页 / 共11页
2023年高考数学一轮复习 点点练15 解三角形及应用(含解析)文.docx_第3页
第3页 / 共11页
2023年高考数学一轮复习 点点练15 解三角形及应用(含解析)文.docx_第4页
第4页 / 共11页
2023年高考数学一轮复习 点点练15 解三角形及应用(含解析)文.docx_第5页
第5页 / 共11页
2023年高考数学一轮复习 点点练15 解三角形及应用(含解析)文.docx_第6页
第6页 / 共11页
2023年高考数学一轮复习 点点练15 解三角形及应用(含解析)文.docx_第7页
第7页 / 共11页
2023年高考数学一轮复习 点点练15 解三角形及应用(含解析)文.docx_第8页
第8页 / 共11页
2023年高考数学一轮复习 点点练15 解三角形及应用(含解析)文.docx_第9页
第9页 / 共11页
2023年高考数学一轮复习 点点练15 解三角形及应用(含解析)文.docx_第10页
第10页 / 共11页
2023年高考数学一轮复习 点点练15 解三角形及应用(含解析)文.docx_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
资源描述

1、点点练15解三角形及应用一基础小题练透篇1.设ABC的内角A,B,C所对的边分别为a,b,c,若bcosCccosBasinA,则ABC的形状为()A锐角三角形B直角三角形C钝角三角形D不确定2ABC的内角A,B,C所对的边分别是a,b,c,若A105,B45,b2,则c等于()A1BCD23在ABC中角A,B,C的对边分别为a,b,c,若a,b,B,则A等于()ABCD4在ABC中,AC3,BC,AB2,则ABC的面积为()A2BCD5我国南宋时期数学家秦九韶发现了求三角形面积的“三斜求积”公式:设ABC内角A,B,C所对的边分别为a,b,c,面积S.若b2,asinB2bsinC,则ABC

2、面积的最大值为()ABCD6魏晋时刘徽撰写的海岛算经是关于测量的数学著作,其中第一题是测海岛的高如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”则海岛的高AB()A表高B表高C表距D表距7如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30的方向上,行驶600m后到达B处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD_m.8在ABC中,若tanAtanB1,AB,则ABC面积的最大值为_二能力小题提升篇1.2022安徽

3、黄山一模已知ABC的内角A,B,C的对边分别为a,b,c.ABC的面积为,且2bcosA2ca,ac4,则ABC的周长为()A4B6C42D822022吉林松原月考ABC的内角A,B,C的对边分别为a,b,c.若(sinBsinC)2sin2(BC)3sinBsinC,且a2,则ABC的面积的最大值是()ABC2D432022河南联考马尔代夫群岛是世界上风景最为优美的群岛之一,如图所示,为了测量A,B两座岛之间的距离,小船从初始位置C出发,已知A在C的北偏西45的方向上,B在C的北偏东15的方向上,现在船往东航行2百海里到达E处,此时测得B在E的北偏西30的方向上,再回到C处,由C向西航行2百

4、海里到达D处,测得A在D的北偏东22.5的方向上,则AB两座岛之间的距离为()A3百海里B3百海里C4百海里D4百海里42022湖南怀化月考已知ABC的内角A,B,C的对边分别为a,b,c,A60,b3c,角A的平分线交BC于点D,且BD,则cosADB的值为()ABCD52022广东佛山模考已知ABC中,内角A,B,C所对的边分别为a,b,c,满足b2,B60的三角形有两个,则边长a的取值范围是_62022河南郑州一模在ABC中,内角A,B,C所对应的边分别为a,b,c,且2cosAa(cosC),c2,D为AC上一点,ADDC13,则ABC的面积取最大值时,BD_三高考小题重现篇1.202

5、0全国卷在ABC中,cosC,AC4,BC3,则cosB()ABCD2全国卷在ABC中,cos,BC1,AC5,则AB()A4BCD232019全国卷ABC的内角A,B,C的对边分别为a,b,c.已知asinAbsinB4csinC,cosA,则()A6B5C4D34全国卷ABC的内角A,B,C的对边分别为a,b,c.若ABC的面积为,则C()ABCD52021全国乙卷记ABC的内角A,B,C的对边分别为a,b,c,面积为,B60,a2c23ac,则b_62019全国卷ABC的内角A,B,C的对边分别为a,b,c.若b6,a2c,B,则ABC的面积为_.四经典大题强化篇1.如图,在四边形ABC

6、D中,CD3,BC,cosCBD.(1)求BDC;(2)若A,求ABD周长的最大值2ABC的内角A,B,C所对的边分别为a,b,c.向量m(a,b)与n(cosA,sinB)平行(1)求A;(2)若a,b2,求ABC的面积点点练15解三角形及应用一基础小题练透篇1答案:B解析:由正弦定理得sinBcosCsinCcosBsin2A,sin(BC)sin2A,即sin(A)sin2A,sinAsin2A.A(0,),sinA0,sinA1,即A,ABC为直角三角形2答案:D解析:由已知得C180BA30,根据正弦定理:,故c2.3答案:A解析:在ABC中,a,b,B,由正弦定理可得,所以sinA

7、,因为ab,所以AB,可得A,所以A.4答案:B解析:由余弦定理得,cosA,所以sinA,所以ABC的面积为ABACsinA23.5答案:C解析:asinB2bsinC,由正弦定理得ab2bc且b0,即a2c且b2,SABC,c2时,ABC面积取最大值.6答案:A解析:如图所示:由平面相似可知,而DEFG,所以,而CHCEEHCGEHEG,即ABDEDE表高7答案:100解析:设此山高h(m),则BCh,在ABC中,BAC30,CBA105,BCA45,AB600(m).在ABC中,根据正弦定理得,即,解得h100(m).8答案:解析:因为tanAtanB1,所以cosAcosBsinAsi

8、nBcos(AB)cosC0,即cosC0.又因为0Cc,所以BC.因为ADB30C,ADC30B,所以ADBc,所以BC.又BC120,所以B60BAD,所以ADBD,所以AD3.所以cosADB.5答案:2a解析:满足题意的三角形要有两个,则需a sin Bb即a sin 602,解得2a0,y0,利用基本不等式得:(xy)2163xy,即16,即(xy)264,当且仅当xy4时,等号成立,即(xy)max8,所以(ABADBD)max8412.所以ABD周长的最大值为12.2解析:(1)因为mn,所以asinBbcosA0,由正弦定理,得sinAsinBsinBcosA0,又sinB0,从而tanA,由于0A,所以A.(2)方法一由余弦定理,得a2b2c22bccosA,而由a,b2,A,得74c22c,即c22c30,因为c0,所以c3,故ABC的面积为SbcsinA.方法二由正弦定理,得,从而sinB,又由ab,知AB,所以cosB,故sinCsin(AB)sinsinBcoscosBsin.所以ABC的面积为SabsinC.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3