1、1.2.1 等差数列、等比数列通项与求和一、选择题1等差数列an的前n项和为Sn,若a12,S312,则a6等于()A8 B.10 C.12 D.14解析:由题意知a12,由S33a1d12,解得d2,所以a6a15d25212.故选C.答案:C2等差数列an的公差为2,若a2,a4,a8成等比数列,则数列an的前n项和Sn()An(n1) B.n(n1)C. D.解析:a2,a4,a8成等比数列,aa2a8,即(a13d)2(a1d)(a17d),将d2代入上式,解得a12.Sn2nn(n1)故选A.答案:A3在等差数列an中,已知a4a816,则该数列前11项和S11等于()A58 B.8
2、8 C.143 D.176解析:S1188.故选B.答案:B4在各项均为正数的等比数列an中,若am1am12am(m2),数列an的前n项积为Tn,若T2m1512,则m的值为()A4 B.5C6 D.7解析:由等比数列的性质可知am1am1a2am(m2),所以am2(m2),即an2,即数列an为常数列,所以T2m122m151229,即2m19,所以m5.故选B.答案:B5已知an为等比数列,a4a72,a5a68,则a1a10()A7 B.5C5 D.7解析:an是等比数列,a5a6a4a78,联立可解得或当时,q3,故a1a10a7q37;当时,q32,同理有a1a107.答案:D
3、6已知2,a1,a2,8成等差数列,2,b1,b2,b3,8成等比数列,则等于()A. B.C D.或解析:2,a1,a2,8成等差数列,a2a12.又2,b1,b2,b3,8成等比数列,b(2)(8)16,解得b24.又b2b2,b24,.故选B.答案:B7设各项都是正数的等比数列an,Sn为前n项和,且S1010,S3070,那么S40等于()A150 B.200C150或200 D.400或50解析:依题意,数列S10,S20S10,S30S20,S40S30成等比数列,因此有(S20S10)2S10(S30S20),即(S2010)210(70S20),故S2020或S2030.又S2
4、00,因此S2030,S20S1020,S30S2040,故S40S3080,S40150.故选A.答案:A8各项都是正数的等比数列an中,3a1,a3,2a2成等差数列,则()A1 B.3 C.6 D.9解析:依题意可知,a33a12a2,即a1q23a12a1q,即q22q30,解得q3或q1,由于an为正项等比数列,所以q3.则9.故选D.答案:D9在等差数列an中,a12 015,其前n项和为Sn,若2,则S2 016的值等于()A2 015 B.2 015C2 016 D.0解析:设数列an的公差为d.S1212a1d,S1010a1d,所以a1d.a1d,所以d2,所以S2 016
5、2 016a1d0.故选D.答案:D10已知数列an的前n项和为Sn,且Sn1Sn(nN*),若a10a11,则Sn取最小值时n的值为()A10 B.9 C.11 D.12解析:Sn1Sn,由等差数列前n项和的性质,知数列an为单调递增的等差数列,将n换为n1得,Sn2Sn1,得,an2an1n9,当n9时,a11a100,又a10a11,a110,a100,n10时,Sn取最小值故选A.答案:A11如果xxx,xZ,0x1,就称x表示x的整数部分,x表示x的小数部分已知数列an满足a1,an1an,则a2 019a2 018等于()A2019 B.2 018C6 D.6解析:a1,an1an
6、,a2262,a31012,a414182,a52224,.a2 01862 0172,a2 01962 018.则a2 019a2 0186.故选D.答案:D12数列an满足an1an2n,nN*,则数列an的前100项和为()A5 050 B.5 100C9 800 D.9 850解析:设kN*.当n2k时,a2k1a2k4k,即a2k1a2k4k,当n2k1时,a2ka2k14k2,联立可得,a2k1a2k12,所以数列an的前100项和Sna1a2a3a4a99a100(a1a3a99)(a2a4a100)(a1a3a99)(a34)(a542)(a743)(a101450)252(a
7、3a5a101)4(12350)25225245 100.故选B.答案:B二、填空题13各项均不为零的等差数列an中,a12,若aan1an10(nN*,n2),则S2019_.解析:由于aan1an10(nN*,n2),即a2an0,an2,n2.又a12,an2,nN*,故S20194 038.答案:4 03814设数列an的前n项和为Sn.若S24,an12Sn1,nN*,则a1_,S5_.解析:an12Sn1,Sn1Sn2Sn1,Sn13Sn1,Sn13,数列是公比为3的等比数列,3.又S24,S11,a11,S53434,S5121.答案:112115数列an是首项a14的等比数列,
8、且4a1,a5,2a3成等差数列,则a2 017.解析:设公比为q,则a5a1q4,a3a1q2.又4a1,a5,2a3成等差数列,2a54a12a3,即2a1q44a12a1q2,q4q220,解得q21或q22(舍去),q1.a2 0174(1)2 01714.答案:416设等差数列an,bn的前n项和分别为Sn,Tn,若对任意自然数n都有,则的值为.解析:an,bn为等差数列,.,.答案:17已知等比数列an的前n项和为Sn,a12,an0(nN*),S6a6是S4a4,S5a5的等差中项(1)求数列an的通项公式;(2)设bnloga2n1,数列的前n项和为Tn,求Tn.解析:(1)S
9、6a6是S4a4,S5a5的等差中项,2(S6a6)S4a4S5a5,化简得4a6a4.a12,an是等比数列,设公比为q.则q2.an0(nN*),q0,q,数列an的通项公式an2n1n2.(2)由bnloga2n1log2n32n3,数列bn的通项公式bn2n3.那么.数列的前n项和为Tn(11)1.18已知数列an的前n项和为Sn,且Sn4an3(nN*)(1)证明:数列an是等比数列;(2)若数列bn满足bn1anbn(nN*),且b12,求数列bn的通项公式解析:(1)证明:依题意Sn4an3(nN*),n1时,a14a13,解得a11.因为Sn4an3,则Sn14an13(n2)
10、,所以当n2时,anSnSn14an4an1,整理得anan1.又a110,所以an是首项为1,公比为的等比数列(2)因为ann1,由bn1anbn(nN*),得bn1bnn1.可得bnb1(b2b1)(b3b2)(bnbn1)23n11(n2)当n1时也满足所以数列bn的通项公式为bn3n11.19已知数列an满足:a11,nan12(n1)ann(n1)(nN*),若bn1.(1)证明数列bn为等比数列;(2)求数列an的通项公式an及其前n项和Sn.解析:(1)证明:nan12(n1)ann(n1)1,得122,即bn12bn,又b12,所以数列bn是以2为首项,2为公比的等比数列(2)
11、由(1)知bn2n12nann(2n1),Sn1(21)2(221)3(231)n(2n1)12222323n2n(123n)12222323n2n.令Tn12222323n2n,则2Tn122223324n2n1,两式相减,得Tn222232nn2n1n2n1,Tn2(12n)n2n1(n1)2n12,Sn(n1)2n12.20若数列an的前n项和为Sn,点(an,Sn)在yx的图象上(nN*)(1)求数列an的通项公式;(2)若c10,且对任意正整数n都有cn1cnlogan,求证:对任意正整数n2,总有.解析:(1)Snan,当n2时,anSnSn1an1an,anan1.又S1a1,a1,ann12n1.(2)证明:由cn1cnlogan2n1,得当n2时,cnc1(c2c1)(c3c2)(cncn1)035(2n1)n21(n1)(n1).又,.