1、1.1.1 集合的含义与表示(第一课时)教学目标:1.理解集合的含义。2.了解元素与集合的表示方法及相互关系。3.熟记有关数集的专用符号。4.培养学生认识事物的能力。教学重点:集合含义教学难点:集合含义的理解教学方法:尝试指导法教学过程:引入问题(I)提出问题 问题1:班级有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(板书标题)。复习问题 问题3:在小学和初中我们学过哪些集合?(数集,点集)(如自然数
2、的集合,有理数的集合,不等式的解的集合,到一个定点的距离等于定长的点的集合,到一条线段的两个端点距离相等的点的集合等等)。(II)讲授新课1集合含义通过以上实例,指出:(1)含义:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。说明:在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。(2)表示方法:集合通常用大括号 或大写的拉丁字母A,B,C表示,而元素用小写的拉丁字母a,b,c表示。问题4:由此上述例中集合的元素分别是什么?2. 集合元素的三个特征问题:(1)A=1,3,问3、5哪个
3、是A的元素?(2)A=所有素质好的人,能否表示为集合?B=身材较高的人呢?(3)A=2,2,4,表示是否准确?(4)A=太平洋,大西洋,B=大西洋,太平洋,是否表示为同一集合?由以上四个问题可知,集合元素具有三个特征:(1) 确定性: 设A是一个给定的集合,a是某一具体的对象,则a或者是A的元素,或者不是A的元素,两种情况必有一种而且只有一种成立。如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋) “中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合元素与集合的关系:(元素与集合的关系有“属于”及“不属于两种
4、)若a是集合A中的元素,则称a属于集合A,记作aA;若a不是集合A的元素,则称a不属于集合A,记作aA。如A=2,4,8,16,则4A,8A,32A.(请学生填充)。(2) 互异性:即同一集合中不应重复出现同一元素.说明:一个给定集合中的元素是指属于这个集合的互不相同的对象.因此,以后提到集合中的两个元素时,一定是指两个不同的元素. 如:方程(x-2)(x-1)2=0的解集表示为1,-2,而不是1,1,-2(3)无序性: 即集合中的元素无顺序,可以任意排列,调换. 3.常见数集的专用符号 N:非负整数集(自然数集). N*或N+:正整数集,N内排除0的集.Z: 整数集Q:有理数集.R:全体实数
5、的集合。(III)课堂练习1.课本P2、3中的思考题2.补充练习:(1) 考察下列对象是否能形成一个集合? 身材高大的人 所有的一元二次方程 直角坐标平面上纵横坐标相等的点 细长的矩形的全体 比2大的几个数 的近似值的全体 所有的小正数 所有的数学难题(2) 给出下面四个关系:R,0.7Q,00,0N,其中正确的个数是:( )A4个 B3个 C2个 D1个(3) 下面有四个命题:若-a,则a 若a,b,则a+b的最小值是2集合N中最小元素是1 x2+4=4x的解集可表示为2,2 其中正确命题的个数是( ) A 0 B 1 C 2 D 3(IV)课时小结1.集合的含义;2.集合元素的三个特征中,
6、确定性可用于判定某些对象是否是给定集合的元素,互异性可用于简化集合的表示,无序性可用于判定集合的关系。3.常见数集的专用符号.(V)课后作业一、 书面作业1. 教材P13,习题1.1 A组第1题2. 由实数-a, a, ,2, -5为元素组成的集合中,最多有几个元素?分别为什么?3. 求集合2a,a2+a中元素应满足的条件?4. 若t,求t的值.二、 预习作业1. 预习内容:课本P4P62.预习提纲:(1)集合的表示方法有几种?怎样表示,试举例说明.(2)集合如何分类,依据是什么? 教学后记 1.1.1 集合的含义与表示(第二课时)教学目标:1.掌握集合的两种常用表示方法(列举法和描述法)。.
7、2.通过实例能使学生选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。教学重点:集合的两种常用表示方法(列举法和描述法)教学难点:集合的两种常用表示方法(列举法和描述法)的理解教学方法:尝试指导法和讨论法教学过程:(I)复习回顾问题1:集合元素的特征有哪些?怎样理解,试举例说明.问题2:集合与元素关系是什么?如何表示?问题3:常用的数集有哪些?如何表示?(II)引入问题 问题4:在初中学正数和负数时,是如何表示正数集合和负数集合的? 如表示下列数中的正数 4.8,-3,-0.5,+73,3.1 4.8,+73,3.1, 方法1: 方法2: 4.8,
8、+73,3.1 问题5:在初中学习不等式时,如何表示不等式x+36的解集?(可表示为:x3)(III) 讲授新课 一、集合的表示方法问题4中,方法1为图示法,方法2为列举法.1. 列举法:把集合中的元素一一列举出来,写在大括号里的方法.说明: (1)书写时,元素与元素之间用逗号分开;(2)一般不必考虑元素之间的顺序;(3)在表示数列之类的特殊集合时,通常仍按惯用的次序;(4)在列出集合中所有元素不方便或不可能时,可以列出该集合的一部分元素,以提供某种规律,其余元素以省略号代替;例1用列举法表示下列集合:(1) 小于5的正奇数组成的集合;(2) 能被3整除而且大于4小于15的自然数组成的集合;(
9、3) 从51到100的所有整数的集合;(4) 小于10的所有自然数组成的集合;(5) 方程的所有实数根组成的集合;(6) 由120以内的所有质数组成的集合。 问题6:能否用列举法表示不等式x-70的所有解组成的集合;(2) 到定点距离等于定长的点的集合;(3) 抛物线y=x2上的点;(4)抛物线y=x2上点的横坐标;(5)抛物线y=x2上点的纵坐标;例3试分别用列举法和描述法表示下列集合:(1)方程的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合。 二、集合的分类例4观察下列三个集合的元素个数1. 4.8, 7.3, 3.1, -9; 2. xR0x3; 3. xRx2+1
10、=0由此可以得到集合的分类三、文氏图集合的表示除了上述两种方法以外,还有文氏图法,叙述如下:画一条封闭的曲线,用它的内部来表示一个集合,如图所示: 表示任意一个集合A 表示3,9,27说明:边界用直线还是曲线,用实线还是虚线都无关紧要,只要封闭并把有关元素统统包含在里边就行,但不能理解成圈内每个点都是集合的元素.(IV)课堂练习1.课本P4思考题和P6思考题及练习题。.2.补充练习a.方程组 的解集用列举法表示为_;用描述法表示为 .b. (x,y) x+y=6,x、yN用列举法表示为 .c.用列举法表示下列集合,并说明是有限集还是无限集? (1)xx为不大于20的质数; (2)100以下的,
11、9与12的公倍数; (3)(x,y) x+y=5,xy=6;d.用描述法表示下列集合,并说明是有限集还是无限集? (1)3,5,7,9; (2)偶数; (3)(1,1),(2,4),(3,9),(4,16),;e.判断下列集合是有限集还是无限集或是空集? (1)2,4,6,8,; (2)x1x2; (3)xZ-1x20; (4)xN3x4;f.判断下列关系式是否正确? (1) 2Q; (2) NR; (3) 2(2,1) (4) 22,1; (5) 菱形四边形与三角形; (6) 2yy=x2;(V)课时小结1.通过学习清楚表示集合的方法,并能灵活运用.2.注意集合在解决问题时所起作用.(VI)课后作业1.书面作业:课本P13习题1.1 A组题第2、3、4题。2.预习作业:(1)预习内容:课本P6P8;(2)预习提纲:a.集合A和集合B具有什么关系,就能说明一个集合是另一个集合的子集.b.一个集合A是另一个集合B的真子集,则其应满足条件是什么?教学后记