1、第2课时 动量守恒定律的应用要点一 相对运动问题 即学即用1.人类发射的总质量为M的航天器正离开太阳系向银河系中心飞去,设此时航天器相对太阳中心离去的速度大小为v,受到的太阳引力可忽略,航天器上的火箭发动机每次点火的工作时间都很短,每次工作喷出的气体质量都为m,相对飞船的速度大小都为u,且喷气方向与航天器运动方向相反,试求:火箭发动机工作3次后航天器获得的相对太阳系的速度.答案 v+()mu要点二 多物体系统的动量守恒 即学即用2.如图所示,mA=1 kg,mB=4 kg,小物块mC=1 kg,ab、dc段均光滑,且dc段足够长;物体A、B上表面粗糙,最初均处于静止.小物块C静止在a点,已知a
2、b长度L=16 m,现给小物块C一个水平向右的瞬间冲量I0=6 Ns.(1)当C滑上A后,若刚好在A的右边缘与A具有共同的速度v1(此时还未与B相碰),求v1的大小.(2)A、C共同运动一段时间后与B相碰,若已知碰后A被反弹回来,速度大小为0.2 m/s,C最后和B保持相对静止,求B、C最终具有的共同速度v2.答案 (1)3 m/s(2)1.24 m/s题型1 “人船模型”问题【例1】如图所示,小车静止在光滑水平面上,小车和车上的各种设备(不包括弹丸)的总质量为M,车右侧固定有发射装置,装置内装有n个质量均为m的弹丸,车左侧内壁固定有沙袋,发射器口到沙袋的距离为d.把n颗弹丸最终都射入沙袋中,
3、当前一颗弹丸陷入沙袋中后,再发射后一颗弹丸.求当n颗弹丸射入沙袋后小车移动的距离是多大?答案 题型2 动态过程分析问题【例2】如图所示,将质量为M1,半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是( )A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统动量守恒C.小球离开C点以后,将做竖直上抛运动D.槽将与墙不会再次接触答案 D题型3 碰撞模型【例3】一个质量M=1 kg的鸟在空中以
4、v0=6 m/s的速度沿水平方向飞行,离地面高度h=20 m,忽被一颗质量m=20 g沿水平方向同向飞来的子弹击中,子弹速度v=300 m/s,击中后子弹留在鸟体内,鸟立即死去,g=10 m/s2.求:鸟被击中后落地的时间和鸟落地处离被击中处的水平距离.答案 2 s 23.5 m1.用大小相等的水平恒力F和F分别作用于物体A和物体B上,使A、B在光滑的水平面上沿一条直线由静止开始相向运动,如图所示,已知mAmB,两个力作用相等的距离后都撤去,之后两物体碰撞并合为一体,则它们( )A.可能停止运动B.一定向右运动C.可能向左运动D.仍运动,但方向不确定答案 B2.如图所示,一质量M=3 kg的长
5、方形木板B放在光滑水平地面上,在其右端放一质量m=1 kg的小木块A.现以地面为参照系,给A和B以大小均为4.0 m/s,方向相反的初速度,使A开始向左运动,B开始向右运动,但最后A并没有滑离B板.站在地面的观察者看到在一段时间内小木块A正在做加速运动,则在这段时间内的某时刻木板B相对地面的速度大小可能是( )A.2.4 m/sB.2.8 m/sC.3.0 m/sD.1.8 m/s答案 A3.(2009泰安模拟)如图所示,在光滑的冰面上,人和冰车的总质量为M,是球的质量m的17倍.人坐在冰车上,如果每一次人都以相同的对地速度v将球推出,且球每次与墙发生碰撞时均无机械能损失.试求:球被人推出多少
6、次后,人就再也接不到球了?答案 9次4.人在平板车上用水平恒力拉绳使重物能靠拢自己,如图所示,人相对车始终不动,重物与平板车之间,平板车与地面之间均无摩擦.设开始拉重物时车和重物都是静止的,车和人的总质量为M=100 kg,重物质量m=50 kg,拉力F=200 N,重物在车上向人靠拢了3 m.求:(1)车在地面上移动的距离.(2)这时车和重物的速度.答案 (1)1 m(2)2 m/s 4 m/s1.如图所示,在固定的水平光滑横杆上套着一个轻环,一条线的一端连于轻环,另一端系小球.与球的质量比,轻环和线的质量可忽略不计.开始时,将系球的线绷直并拉到与横杆平行的位置然后释放小球.小球下摆时悬线与
7、横杆的夹角逐渐增大,试问:由0增大到90的过程中,小球速度的水平分量的变化是( )A.一直增大B.先增大后减小C.始终为零D.以上说法都不正确答案 C2.两辆质量相同的小车,置于光滑的水平面上,有一人静止在小车A上,两车静止,如图所示.当这个人从A车跳到B车上,接着又从B车跳回A车并与A车保持相对静止,则A车的速率( )A.等于零B.小于B车的速率C.大于B车的速率D.等于B车的速率答案 B3.相互作用的物体组成的系统在某一相互作用过程中,以下判断正确的是( )A.系统的动量守恒是指只有初、末两状态的动量相等B.系统的动量守恒是指任意两个状态的动量相等C.系统的动量守恒是指系统中任一物体的动量
8、不变D.系统所受外力的冲量为零,系统动量一定守恒答案 B4.在光滑的水平面上有a、b两球,其质量分别为ma、mb,两球在t时刻发生正碰,两球在碰撞前后的速度图象如图所示.下列关系正确的是 ( )A.mambB.mamB.最初人和车都处于静止状态.现在,两人同时由静止开始相向而行,A和B对地面的速度大小相等,则车( )A.静止不动B.左右往返运动C.向右运动D.向左运动答案 D7.如图所示,质量分别为m1、m2的两个小球A、B,带有等量异种电荷,通过绝缘轻弹簧相连接,置于绝缘光滑的水平面上.突然加一水平向右的匀强电场后,两球A、B将由静止开始运动,对两小球A、B和弹簧组成的系统,在以后的运动过程
9、中,以下说法正确的是(设整个过程中不考虑电荷间库仑力的作用,且弹簧不超过弹性限度)( )A.系统机械能不断增加B.系统机械能守恒C.系统动量不断增加D.系统动量守恒答案 D8.(2009南京模拟)如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为mB=2mA,规定向右为正方向,A、B两球的动量均为6 kgm/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kgm/s,则A.左方是A球,碰撞后A、B两球速度大小之比为25B.左方是A球,碰撞后A、B两球速度大小之比为110C.右方是A球,碰撞后A、B两球速度大小之比为25D.右方是A球,碰撞后A、B两球速度大小之比为
10、110答案 A9.如图所示,质量均为M的物体A和B静止在光滑水平地面上并紧靠在一起(不粘连),A的ab部分是四分之一光滑圆弧,bc部分是粗糙的水平面.现让质量为m的小物块C(可视为质点)自a点静止释放,最终刚好能到达c点而不从A上滑下.则下列说法中正确的是( )A.小物块C到b点时,A的速度最大B.小物块C到c点时,A的速度最大C.小物块C到b点时,C的速度最大D.小物块C到c点时,A的速率大于B的速率答案 AC10.如图所示,细线上端固定于O点,其下端系一小球,静止时细线长L.现将悬线和小球拉至图中实线位置,此时悬线与竖直方向的夹角=60,并于小球原来所在的最低点处放置一质量相同的泥球,然后
11、使悬挂的小球从实线位置由静止释放,它运动到最低点时与泥球碰撞并合为一体,它们一起摆动中可达到的最大高度是( )A.B.C.D.答案 C11.如图为一空间探测器的示意图,P1、P2、P3、P4是四个喷气发动机,P1、P3的连线与空间一固定坐标系的x轴平行,P2、P4的连线与y轴平行.每台发动机喷气时,都能向探测器提供推力,但不会使探测器转动.开始时,探测器相对于坐标系以恒定的速率v0沿正x方向平动.先开动P1,使P1在极短时间内一次性喷出质量为m的气体,气体喷出时相对于坐标系的速度大小为v.然后开动P2,使P2在极短的时间内一次性喷出质量为m的气体,气体喷出时相对坐标系的速度大小为v.此时探测器
12、的速度大小为2v0,且方向沿正y方向.假设探测器的总质量为M(包括气体的质量),求每次喷出气体的质量m与探测器总质量M的比值和每次喷出气体的速度v与v0的比值.答案 412.如图所示,半径为R的光滑圆环轨道与高为8R的光滑斜面固定在同一竖直平面内,两轨道之间由一条光滑水平轨道CD相连.在水平轨道CD上,一轻质弹簧被a和b两个金属小球压缩(不连接),弹簧和小球均处于静止状态.今同时释放两个小球,a球恰好能通过圆环轨道最高点A,b球恰好能到达斜面最高点B.已知a球的质量为m,重力加速度为g.求:(1)b球的质量.(2)释放小球前,弹簧的弹性势能.答案 (1) (2)(2.5+2)mgR13.(20
13、09成都模拟)对于两物体碰撞前后速度在同一直线上,且无机械能损失的碰撞过程,可以简化为如下模型:A、B两物体位于光滑水平面上,仅限于沿同一直线运动.当它们之间的距离大于等于某一定值d时,相互作用力为零;当它们之间的距离小于d时,存在大小恒为F的斥力.设A物体质量m1=1.0 kg,开始时静止在直线上某点;B物体质量m2=3.0 kg,以速度v0从远处沿该直线向A运动,如图所示.若d=0.10 m,F=0.60 N,v0=0.20 m/s.求:(1)相互作用过程中,A、B加速度的大小.(2)从开始相互作用到A、B间的距离最小时,系统(物体组)动能的减少量.(3)A、B间的最小距离.答案 (1)0.60 m/s2 0.20 m/s2 (2)0.015 J (3)0.075 m