ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:207KB ,
资源ID:1633793      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1633793-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高考数学复习点拨:选修(2-2)3.1~3.2教材解读.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

高考数学复习点拨:选修(2-2)3.1~3.2教材解读.doc

1、高中新课标数学选修(2-2)3.13.2教材解读山东 赵家明 史纪卿一、数系的扩充和复数的概念1复数的引入:回想数系的每一次扩充都主要来自两个方面:一方面数学本身发展的需要;另一方面由于实际的需要.而复数的引入属于前者我们知道,方程在实数范围内无解,于是需引入新数i使方程有解,显然,需要数系的扩充过程:自然数集整数集有理数集实数集复数集2复数的代数形式:由实数的运算类似地得到新数i可以同实数进行加、减、乘运算,于是得到:形如的数叫做复数,并且把的这一表现形式叫做复数的代数形式,其中的a叫做复数的实部,b叫复数的虚部注意复数的虚部是,而不是3复数相等的充要条件且注意事项:(1)复数(2)复数集(

2、3)两个实数可以比较大小,但两个复数如果不全是实数,则不能比较大小.二、复数的几何意义1复数可以用平面直角坐标系的点来唯一表示,于是:复数集与坐标系中的点集,可以建立一一对应2建立了直角坐标系来表示复数的平面叫做复平面.在复平面内,x轴叫做实轴,y轴叫做虚轴,x轴的单位是,y轴的单位是i,实轴与虚轴的交点叫做原点,且原点对应复数0于是有下面的一一对应关系:复数复平面内的点3由于平面向量与坐标平面的点一一对应,于是有:复数平面向量在这些意义下,我们就可以把复数说成点或向量,这给研究复数运算的几何意义带来了方便 4复数的模就是这个复数对应的向量的模,复数的模为三、复数代数形式的四则运算1复数的加法

3、、减法运算法则其运算法则类似于多项式的合并同类项 复数加法的运算律对于任意的,有:交换律:结合律:复数加法的几何意义设,分别与复数,对应,根据向量加法的平行四边形(三角形)法则,则有(如图1)由平面向量的坐标运算:,即得与复数对应可见,复数的加法可以按向量加法的法则进行复数减法的几何意义设,分别与复数,对应(如图2),根据向量加法的三角形法则有:于是:由平面向量的坐标运算:,即得与复数对应于是得到向量的减法运算法则为:两个复数的差与连接两个向量的终点并指向被减数的向量相对应2复数代数形式的乘法运算运算法则:两个复数相乘类似于两个多项式相乘,只是把换为,并且把实部与虚部分别合并即可运算律:交换律:结合律:分配律:虚数i的乘方及其规律:,可见,即具有周期性且最小正周期为4共轭复数与互为共轭复数,即当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数它的几何意义是:共轭的两个复数关于x轴对称主要用于复数的化简以及复数的除法运算.3复数代数形式的除法运算运算法则:其实质是分母“实数化”,即分子以及分母同乘以分母的“实数化”因式类似于以前所学的把分母“有理化”

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3