1、 高考资源网() 您身边的高考专家过关检测(三十三)1已知函数f(x)kxln x1(k0)(1)若函数f(x)有且只有一个零点,求实数k的值;(2)求证:当nN*时,1ln(n1)解:(1)f(x)kxln x1,f(x)k(x0,k0);当0x时,f(x)时,f(x)0.f(x)在上单调递减,在上单调递增,f(x)minfln k,f(x)有且只有一个零点,ln k0,k1.(2)证明:由(1)知xln x10,即x1ln x,当且仅当x1时取等号,nN*,令x,得ln ,1lnlnlnln(n1),故1ln(n1)2(2020届高三武汉调研)已知aR,函数f(x)xaex1有两个零点x1
2、,x2(x1x2)(1)求实数a的取值范围;(2)证明:ex1ex22.解:(1)f(x)1aex,当a0时,f(x)0,f(x)在R上单调递增,不合题意,舍去当a0时,令f(x)0,解得xln a;令f(x)0,解得xln a.故f(x)在(,ln a)上单调递增,在(ln a,)上单调递减由函数yf(x)有两个零点x1,x2(x1x2),知其必要条件为a0且f(ln a)ln a0,即0a1.此时,1ln a22ln a,且f(1)110.令F(a)f(22ln a)22ln a132ln a(0a1),则F(a)0,所以F(a)在(0,1)上单调递增,所以F(a)F(1)3e20,即f(
3、22ln a)0.故a的取值范围是(0,1)(2)证明:法一:令f(x)0a.令g(x),则g(x)xex,g(x)在(,0)上单调递增,在(0,)上单调递减由(1)知0a1,故有1x10x2.令h(x)g(x)g(x)(1x0),则h(x)(1x)ex(1x)ex(1x0),h(x)xexxexx(exex)0,所以h(x)在(1,0)上单调递减,故h(x)h(0)0,故当1x0时,g(x)g(x)0,所以g(x)g(x),而g(x1)g(x2)a,故g(x1)g(x2)又g(x)在(0,)上单调递减,x10,x20,所以x1x2,即x1x20,故ex1ex222e2.法二:由题意得所以x1
4、x22a(ex1ex2)且a,所以x1x22(ex1ex2).令x2x1t(t0),则x1x22.令m(t)(t2)ett2(t0),则m(t)(t1)et1,令n(t)(t1)et1(t0),则 n(t)tet0,所以m(t)在(0,)上单调递增,故m(t)m(0)0,所以m(t)在(0,)上单调递增,故m(t)m(0)0,即2,结合知x1x20,故ex1ex222e2.3(2019汕头模拟)已知f(x)ln x,g(x)ax2bx(a0),h(x)f(x)g(x)(1)若a3,b2,求h(x)的极值;(2)若函数yh(x)的两个零点为x1,x2(x1x2),记x0,证明:h(x0)0.解:
5、(1)h(x)ln xx22x,x(0,),h(x)3x2,x(0,)令h(x)0,得x,当0x时,h(x)0,h(x)在上单调递增,当x时,h(x)0,h(x)在上单调递减,h(x)极大值hln 3,无极小值(2)证明:函数yh(x)的两个零点为x1,x2(x1x2),不妨设0x1x2,则h(x1)ln x1axbx10,h(x2)ln x2axbx20,h(x1)h(x2)ln x1axbx1(ln x2axbx2)ln x1ln x2a(xx)b(x1x2)0.即a(xx)b(x1x2)ln x1ln x2,又h (x)f(x)g(x)(axb),x0,h(x0),(x1x2)h(x0)
6、(x1x2)ab(ln x1ln x2)ln .令t(0t1),r(t)ln t(0t1),r(t)0,r(t)在(0,1)上单调递减,故r(t)r(1)0,ln 0,即 (x1x2)h(x0)0.又x1x20,h(x0)0.4(2020届高三辽宁五校联考)已知函数f(x)ax2xln x.(1)若f(x)在(0,)上单调递增,求a的取值范围;(2)若ae(e为自然对数的底数),证明:当x0时,f(x)xex.解:(1)f(x)2axln x1.因为f(x)在(0,)上单调递增,所以当x0时,f(x)0恒成立,即 2axln x10恒成立,即2a恒成立设g(x),则2ag(x)max.g(x)
7、,由g(x)0,得ln x0,即0x1;由g(x)0,得ln x0,即x1.所以g(x)在(0,1)上单调递增,在(1,)上单调递减,则g(x)maxg(1)1.所以2a1,即a,故a的取值范围是.(2)证明:当ae时,要证f(x)xex,即证ex2xln xxex.因为x0,所以只需证exln xex,即证ln xexex.设h(x)ln x,则h(x)(x0)由h(x)0,得0x;由h(x)0,得x.则h(x)在上单调递减,在上单调递增所以h(x)minh0,从而h(x)0,即ln x0.设(x)exex(x0),则(x)eex(x0)由(x)0,得0x1;由(x)0,得x1,则(x)在(0,1)上单调递增,在(1,)上单调递减,所以(x)max(1)0,从而(x)0,即exex0.因为h(x)和(x)不同时为0,所以ln xexex,故原不等式成立 高考资源网版权所有,侵权必究!