ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:624KB ,
资源ID:1613003      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1613003-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年高考数学(文)一轮复习单元AB卷(凝练考点 精选试题):第十八单元 圆锥曲线 B卷 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019年高考数学(文)一轮复习单元AB卷(凝练考点 精选试题):第十八单元 圆锥曲线 B卷 WORD版含解析.doc

1、此卷只装订不密封班级 姓名 准考证号 考场号 座位号 单元训练金卷高三数学卷(B)第十八单元 圆锥曲线注意事项:1答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。3非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4考试结束后,请将本试题卷和答题卡一并上交。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1抛

2、物线的准线方程是,则( )ABC8D 8 2已知点,椭圆与直线交于点、,则的周长为( )A4B8C12D163当时,曲线与曲线的( )A焦距相等B离心率相等C焦点相同D渐近线相同4与双曲线有共同渐近线,且经过点的双曲线的虚轴的长为( )AB3C2D4 5已知两圆:,:,动圆和圆内切,和圆外切,则动圆圆心的轨迹方程为( )ABCD6设、为曲线:的焦点,是曲线:与的一个交点,则的面积为( )AB1 CD7已知椭圆的中心在原点,轴上的一个焦点与短轴的两个端点,的连线互相垂直,且这个焦点与较近的长轴的一个端点的距离为,则这个椭圆的方程为( )AB CD或8若以双曲线的左焦点为圆心,以左焦点到右顶点的距

3、离为半径的圆的方程为,则该双曲线的方程为( )ABCD9已知抛物线上有一点,它到焦点的距离为,则的面积(为原点)为( )A1BC2D10已知为椭圆的一个焦点,是短轴的一个端点,线段的延长线交椭圆于点,且,则椭圆的离心率为( )ABCD11已知为抛物线上一个动点,为圆上一个动点,那么点到点的距离与点到抛物线的准线距离之和的最小值是( )ABCD12设直线:与椭圆的交点为、,点是椭圆上的动点,则使面积为的点的个数为( )A1B2C3D4 二、填空题(本大题有4小题,每小题5分,共20分请把答案填在题中横线上)13已知过双曲线右焦点且倾斜角为450的直线与双曲线右支有两个交点,则双曲线的离心率的取值

4、范围是 14椭圆的焦点为,点为椭圆上的动点,当为钝角时,点的横坐标的取值范围是 15若椭圆的焦点在轴上,过点作圆的切线,切点分别为、,直线恰好经过椭圆的右焦点和上顶点,则椭圆方程是 16抛物线上两点、关于直线对称,且,则等于 三、解答题(本大题有6小题,共70分解答应写出文字说明、证明过程或演算步骤)17(10分)(1)已知点,的坐标为,直线,相交于点,且它们的斜率之积是,求动点的轨迹方程;(2)已知定点的坐标为,为动点,若以线段为直径的圆恒与轴相切,求动点的轨迹方程18(12分)如图,过抛物线的焦点作倾斜角为的直线,交抛物线于,两点,点在轴的上方,求的值19(12分)已知双曲线的中心在原点,

5、焦点在轴上,双曲线的两个顶点和虚轴的一个端点构成的三角形为等腰直角三角形,且双曲线过点;(1)求双曲线的方程;(2)设,为双曲线的焦点,若点在双曲线上,求证20(12分)如图,过椭圆的左焦点作轴的垂线交椭圆于点,点和点分别为椭圆的右顶点和上顶点,(1)求椭圆的离心率;(2)过右焦点作一条弦,使,若的面积为,求椭圆的方程21(12分)已知椭圆的离心率为,右焦点到上顶点的距离为,点是线段上的一个动点;(1)求椭圆的方程;(2)是否存在过点且与轴不垂直的直线与椭圆交于,两点,使得,并说明理由22(12分)已知椭圆的一个焦点与抛物线的焦点重合,且椭圆短轴的两个端点与构成正三角形(1)求椭圆的方程;(2

6、)若过点的直线与椭圆交与不同两点、,试问在轴上是否存在定点,使恒为定值?若存在,求出的坐标及定值;若不存在,请说明理由单元训练金卷高三数学卷答案(B)第十八单元 圆锥曲线一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1【答案】B【解析】抛物线化为标准方程为,准线方程是,故选B2【答案】B【解析】椭圆的焦点为,直线过,的周长为,故选B3【答案】A【解析】当时,曲线为焦点在轴上的椭圆,曲线为焦点在轴上的双曲线,焦距相等,故选A4【答案】D【解析】因为与双曲线有共同渐近线,可设所求双曲线的方程为,把点代入得,双曲线的方程为,整理得,虚轴的长为

7、,故选D5【答案】D【解析】设动圆的半径为,则,的轨迹是以、为焦点的椭圆,且,动圆圆心的轨迹方程为,故选D6【答案】C【解析】不妨设为第一象限的点,由,解得,的面积为,故选C7【答案】C【解析】由题意可知,椭圆的标准方程为,由椭圆的对称性知,又,为等腰直角三角形,故,即,联立,解得,椭圆的方程为,故选C8【答案】C【解析】圆即为,圆心为,半径,由题设知,为双曲线的左焦点,又左焦点到右顶点的距离为圆的半径,则,则该双曲线的方程为,故选C9【答案】C【解析】抛物线的准线方程为,由于到焦点的距离为,故有,抛物线的方程为,则,故选C10【答案】B【解析】不妨设椭圆的焦点在轴上,标准方程为,如图,则,设

8、,则,即,点在椭圆上,即,故选B11【答案】C【解析】由题设知,抛物线的焦点为,由抛物线的定义得,点到点的距离与点到抛物线的准线距离之和为:,又的圆心为,结合图形知,的最小值为:,故选C12【答案】D【解析】直线经过椭圆的两个顶点和,故,要使的面积为,即,则,联立与椭圆方程得,令,解得,平移直线到时与椭圆相切,它们与的距离,均大于,满足条件的点有个,故选D二、填空题(本大题有4小题,每小题5分,共20分请把答案填在题中横线上)13【答案】【解析】渐近线的方程为,平方得到:,14【答案】【解析】由题设知,以原点为圆心,为半径作圆,圆的方程为,则为圆的直径,当在圆内时,为钝角,由消去得,结合图形可

9、知,即点的横坐标的取值范围是15【答案】【解析】当斜率存在时,设过点的直线方程为:,根据直线与圆相切,圆心到直线的距离等于半径可以得到,直线与圆方程的联立可以得到切点的坐标;当斜率不存在时,直线方程为:,根据两点,可以得到直线:,则与轴的交点即为上顶点坐标,与轴的交点即为焦点,则,椭圆方程为16【答案】【解析】 ,又, ,由于在直线上,即,即,三、解答题(本大题有6小题,共70分解答应写出文字说明、证明过程或演算步骤)17【答案】(1);(2)【解析】(1)设动点,因为直线,的斜率之积是,所以,整理得,所以动点的轨迹方程为(2)设动点,线段的中点为,圆与轴相切于,连接,所以,轴,因为为直角三角

10、形斜边上的中线,所以,由,化简得,所以动点的轨迹方程为18【答案】【解析】过点分别作,垂直于轴,垂足分别为,直线的倾斜角为,且过焦点,直线的方程为;联立得,解得,点在轴的上方,19【答案】(1);(2)见解析【解析】(1)设双曲线的方程为,双曲线的两个顶点和虚轴的一个端点构成的三角形为等腰直角三角形,又双曲线过点,则双曲线的方程为;(2)由(1)知,;点在双曲线上,则,则,20【答案】(1);(2)【解析】(1),解得,故(2)由(1)知椭圆方程可化简为易求直线的斜率为,故可设直线的方程为:由消去得,于是的面积,因此椭圆的方程为,即21【答案】(1);(2)当时,即存在这样的直线,当时,不存在,即不存在这样的直线【解析】(1)由题意可知,又;解得,椭圆的方程为;(2)由(1)得,;假设存在满足题意的直线,设的方程为,由得,;设,则,;,而的方向向量为,当时,即存在这样的直线,方程为;当时,不存在,即不存在这样的直线22【答案】(1);(2)当时,为定值【解析】(1)由题意知抛物线的焦点,又椭圆短轴的两个端点与构成正三角形,所以椭圆的方程为;(2)当直线的斜率存在时,设其斜率为,则的方程为:,消去并整理得,设,;若为定值,则,解得,此时,为定值;当直线的斜率不存在时,直线的方程为:,直线与椭圆交于点、,由可得,综上所述当时,为定值

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3