ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:166.50KB ,
资源ID:160486      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-160486-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020届高考数学大二轮专题复习冲刺方案-理数(创新版)文档:题型2 第3讲 数列 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020届高考数学大二轮专题复习冲刺方案-理数(创新版)文档:题型2 第3讲 数列 WORD版含解析.doc

1、第3讲数列考情分析数列为每年高考必考内容之一,题型不固定,等差、等比数列基本量和性质的考查是高考的热点,经常以客观题的形式呈现;数列求和及数列与函数、不等式的综合问题常以解答题的形式呈现,考查分析问题、解决问题的能力及转化与化归等数学思想方法.热点题型分析热点1等差数列与等比数列的综合1等差(比)数列的运算策略(1)在等差(比)数列中,首项a1和公差d(公比q)是两个最基本的元素;(2)在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解2应用数列性质解题的方法(1)抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求

2、解;(2)牢固掌握等差(比)数列的性质,可分为三类:通项公式的变形;等差(比)中项的变形;前n项和公式的变形(2018全国卷)等比数列an中,a11,a54a3.(1)求an的通项公式;(2)记Sn为an的前n项和若Sm63,求m.解(1)设an的公比为q,由题设得anqn1.由已知得q44q2,解得q0(舍去),q2或q2.故an(2)n1或an2n1.(2)若an(2)n1,则Sn.由Sm63得(2)m188,此方程没有正整数解若an2n1,则Sn2n1.由Sm63得2m64,解得m6.综上,m6.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法有两个处理

3、思路:一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,但在应用性质时要注意性质的前提条件,有时需要进行适当变形(2019北京高考)设an是等差数列,a110,且a210,a38,a46成等比数列(1)求an的通项公式;(2)记an的前n项和为Sn,求Sn的最小值解(1)设an的公差为d.因为a110,所以a210d,a3102d,a4103d.因为a210,a38,a46成等比数列,所以(a38)2(a210)(a46)所以(22d)2d(43d)解得d2.所以ana1(n1)d2n12.(2)由(1)知,an2n12.则当n7时

4、,an0;当n6时,an0.所以Sn的最小值为S5S630.热点2数列的通项与求和1求数列通项公式的常见类型及方法(1)观察法:根据所给的一列数、式、图形等,通过观察法求其通项公式;(2)公式法:利用等差(比)数列的通项公式求an;(3)已知Sn与an的关系,利用an求an;(4)累加法:形如an1anf(n)的解析式,可用递推式多项相加法求得an;(5)累乘法:形如an1f(n)an(an0)的解析式,可用递推式多项相乘法求得an;(6)倒数法:形如f(anan1,an,an1)0的关系,同乘,先求出,再求出an;(7)构造辅助数列法:通过变换递推关系,将非等差(等比)数列构造为等差(等比)

5、数列来求其通项公式2求数列前n项和Sn的常见方法(1)公式法:利用等差、等比数列的前n项和公式求数列的前n项和;(2)裂项相消法:将数列恒等变形为连续两项或相隔若干项之差的形式,进行消项;(3)错位相减法:求解形如anbn和的前n项和,数列an,bn分别为等差与等比数列;(4)倒序相加法:应用于等差数列或能转化为等差数列的数列求和;(5)分组求和法:数列为等差与等比数列的代数和或奇数项和偶数项的规律不同,根据其表现形式分别求和1(2019天津高考)设an是等差数列,bn是等比数列,公比大于0.已知a1b13,b2a3,b34a23.(1)求an和bn的通项公式;(2)设数列cn满足cn求a1c

6、1a2c2a2nc2n(nN*)解(1)设等差数列an的公差为d,等比数列bn的公比为q.依题意,得解得故an33(n1)3n,bn33n13n.所以,an的通项公式为an3n,bn的通项公式为bn3n.(2)a1c1a2c2a2nc2n(a1a3a5a2n1)(a2b1a4b2a6b3a2nbn)(631123218336n3n)3n26(131232n3n)记Tn131232n3n,则3Tn132233n3n1,得,2Tn332333nn3n1n3n1.所以,a1c1a2c2a2nc2n3n26Tn3n23(nN*)2(2018天津高考)设an是等比数列,公比大于0,其前n项和为Sn(nN

7、*),bn是等差数列已知a11,a3a22,a4b3b5,a5b42b6.(1)求an和bn的通项公式;(2)设数列Sn的前n项和为Tn(nN*),求Tn;证明 2(nN*)解(1)设等比数列an的公比为q.由a11,a3a22.可得q2q20.因为q0,可得q2,故an2n1.设等差数列bn的公差为d,由a4b3b5,可得b13d4.由a5b42b6,可得3b113d16.从而b11,d1,故bnn.所以数列an的通项公式为an2n1,数列bn的通项公式为bnn.(2)由(1),有Sn2n1,故Tn (2k1)2knn2n1n2.证明:因为,所以 2.采用错位相减法求和,要注意相减后和式的结

8、构,把项数数清采用裂项相消法求和,消项时要注意相消的规律,可将数列的前几项和表示出来,归纳出规律常用的裂项相消变换有:(1)分式裂项:;(2)根式裂项:();(3)对数式裂项:lg lg (np)lg n;(4)指数式裂项:aqn(qnqn1)(q0且q1)等差数列an的前n项和为Sn,已知a110,a2为整数,且SnS4.(1)求an的通项公式;(2)设bn,求数列bn的前n项和Tn.解(1)由a110,a2为整数,可知等差数列an的公差d为整数又SnS4,故a40,a50,于是103d0,104d0,解得d,因此d3,故数列an的通项公式为an133n.(2)bn,于是Tnb1b2bn.热

9、点3数列的综合应用解决数列与函数、不等式的综合问题要注意以下几点:(1)由于数列是一类特殊函数,因此解答数列问题时,多从函数角度入手,准确处理数列问题;(2)利用数列自身特点和自身性质,准确推理,其中注意适时分类讨论;(3)证明不等关系时要充分利用题意恰当使用放缩法1(2017北京高考)设an和bn是两个等差数列,记cnmaxb1a1n,b2a2n,bnann(n1,2,3,),其中maxx1,x2,xs表示x1,x2,xs这s个数中最大的数(1)若ann,bn2n1,求c1,c2,c3的值,并证明cn是等差数列;(2)证明:或者对任意正数M,存在正整数m,当nm时,M;或者存在正整数m,使得

10、cm,cm1,cm2,是等差数列解(1)c1b1a1110,c2maxb12a1,b22a2max121,3221,c3maxb13a1,b23a2,b33a3max131,332,5332.当n3时,(bk1nak1)(bknak)(bk1bk)n(ak1ak)2n0,所以bknak关于kN*单调递减所以cnmaxb1a1n,b2a2n,bnannb1a1n1n.所以对任意n1,cn1n,于是cn1cn1,所以cn是等差数列(2)证明:设数列an和bn的公差分别为d1,d2,则bknakb1(k1)d2a1(k1)d1nb1a1n(d2nd1)(k1)所以cn当d10时,取正整数m,则当nm

11、时,nd1d2,因此cnb1a1n.此时,cm,cm1,cm2,是等差数列当d10时,对任意n1,cnb1a1n(n1)maxd2,0b1a1(n1)(maxd2,0a1)此时,c1,c2,c3,cn,是等差数列当d10时,当n时,有nd1d2,所以n(d1)d1a1d2n(d1)d1a1d2|b1d2|.对任意正数M,取正整数mmax,故当nm时,M.2(2019江苏高考)定义首项为1且公比为正数的等比数列为“M数列”(1)已知等比数列an(nN*)满足:a2a4a5,a34a24a10,求证:数列an为“M数列”;(2)已知数列bn(nN*)满足:b11,其中Sn为数列bn的前n项和求数列

12、bn的通项公式;设m为正整数若存在“M数列”cn(nN*),对任意正整数k,当km时,都有ckbkck1成立,求m的最大值解(1)证明:设等比数列an的公比为q,所以a10,q0.由得解得因此数列an为“M数列”(2)因为,所以bn0.由b11,S1b1,得,则b22.由,得Sn.当n2时,由bnSnSn1,得bn,整理得bn1bn12bn.所以数列bn是首项和公差均为1的等差数列因此,数列bn的通项公式为bnn(nN*)由知,bkk,kN*.因为数列cn为“M数列”,设公比为q,所以c11,q0.因为ckbkck1,所以qk1kqk,其中k1,2,3,m(mN*)当k1时,有q1;当k2,3

13、,m时,有ln q.设f(x)(x1),则f(x).令f(x)0,得xe.列表如下:x(1,e)e(e,)f(x)0f(x)极大值因为0,求使得Snan的n的取值范围解(1)设等差数列an的公差为d.由S9a5得a14d0.由a34得a12d4.于是a18,d2.因此等差数列an的通项公式为an102n.(2)由(1)得a14d,故an(n5)d,Sn.由a10知d0.解(1)满足条件的数列A3为:1,1,6;1,0,4;1,1,2;1,2,0.(2)假设a11,因为a10,所以a11.又a2,a3,an1,因此有a12n1a22n2a32n3an12an2n1(1)2n2(1)2n3(1)2

14、(1)2n12n22n3211,这与a12n1a22n2a32n3an12an0矛盾!所以a11.(3)先证明如下结论:k1,2,n1,必有a12n1a22n2ak2nk0.否则,令a12n1a22n2ak2nk0,注意到左式是2nk的整数倍,因此a12n1a22n2ak2nk2nk.所以有a12n1a22n2a32n3an12an2nk(1)2nk1(1)2nk2(1)2(1)2nk2nk12nk2211,这与a12n1a22n2a32n3an12an0矛盾!所以a12n1a22n2ak2nk0.因此有a10,a12a20,a14a22a30,a12k1a22k2ak12ak0,a12n2a22n3an22an10.将上述n1个不等式相加得a1(2n11)a2(2n21)an1(21)0.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3