收藏 分享(赏)

北师大版九下第3章圆9弧长及扇形的面积教案.docx

上传人:高**** 文档编号:1599966 上传时间:2024-06-08 格式:DOCX 页数:5 大小:54.89KB
下载 相关 举报
北师大版九下第3章圆9弧长及扇形的面积教案.docx_第1页
第1页 / 共5页
北师大版九下第3章圆9弧长及扇形的面积教案.docx_第2页
第2页 / 共5页
北师大版九下第3章圆9弧长及扇形的面积教案.docx_第3页
第3页 / 共5页
北师大版九下第3章圆9弧长及扇形的面积教案.docx_第4页
第4页 / 共5页
北师大版九下第3章圆9弧长及扇形的面积教案.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、弧长和扇形面积教学目标(一)知识与技能1经历探索弧长计算公式及扇形面积计算公式的过程;2了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题(二)过程与方法1经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力2了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力(三)情感态度与价值观1经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性2通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力教学重点1经历探索弧长及扇形面积计

2、算公式的过程2了解弧长及扇形面积计算公式3会用公式解决问题教学难点1探索弧长及扇形面积计算公式2用公式解决实际问题教学方法学生互相交流探索法教学过程创设问题情境,引入新课师在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的一部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索新课讲解一、复习1圆的周长如何计算?2圆的面积如何计算?3圆的圆心角是多少度?生若圆的半径为r,则周长l2r,面积Sr2,圆的圆心角是360二、探索弧长的计算公式如图,某传送带的一个转动轮的半径为10cm(1)转动轮转一周,传送带上的物品A被传送多少厘米

3、?(2)转动轮转1,传送带上的物品A被传送多少厘米?(3)转动轮转n,传送带上的物品A被传送多少厘米?师分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360的圆心角,所以转动轮转1,传送带上的物品A被传送圆周长的;转动轮转n,传送带上的物品A被传送转1时传送距离的n倍生解:(1)转动轮转一周,传送带上的物品A被传送21020cm;(2)转动轮转1,传送带上的物品A被传送cm;(3)转动轮转n,传送带上的物品A被传送ncm师根据上面的计算,你能猜想出在半径为R的圆中,n的圆心角所对的弧长的计算公式吗?请大家互相交流生根据刚才的讨论可知,360的圆心角对应圆周长2R,那么

4、1的圆心角对应的弧长为,n的圆心角对应的弧长应为1的圆心角对应的弧长的n倍,即n师表述得非常棒在半径为R的圆中,n的圆心角所对的弧长(arclength)的计算公式为:l下面我们看弧长公式的运用三、例题讲解制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即的长(结果精确到0.1mm)分析:要求管道的展直长度,即求的长,根根弧长公式l可求得的长,其中n为圆心角,R为半径解:R40mm,n110的长R4076.8mm因此,管道的展直长度约为76.8mm四、想一想在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的另一端拴着一只狗(1)这只狗的最大活动区

5、域有多大?(2)如果这只狗只能绕柱子转过n角,那么它的最大活动区域有多大?师请大家互相交流生(1)如图(1),这只狗的最大活动区域是圆的面积,即9;(2)如图(2),狗的活动区域是扇形,扇形是圆的一部分,360的圆心角对应的圆面积,1的圆心角对应圆面积的,即9,n的圆心角对应的圆面积为n师请大家根据刚才的例题归纳总结扇形的面积公式生如果圆的半径为R,则圆的面积为R2,1的圆心角对应的扇形面积为,n的圆心角对应的扇形面积为n因此扇形面积的计算公式为S扇形R2,其中R为扇形的半径,n为圆心角五、弧长与扇形面积的关系师我们探讨了弧长和扇形面积的公式,在半径为R的圆中,n的圆心角所对的弧长的计算公式为

6、lR,n的圆心角的扇形面积公式为S扇形R2,在这两个公式中,弧长和扇形面积都和圆心角n半径R有关系,因此l和S之间也有一定的关系,你能猜得出吗?请大家互相交流生lR,S扇形R2,R2RRS扇形lR六、扇形面积的应用扇形AOB的半径为12cm,AOB120,求的长(结果精确到0.1cm)和扇形AOB的面积(结果精确到0.1cm2)分析:要求弧长和扇形面积,根据公式需要知道半径R和圆心角n即可,本题中这些条件已经告诉了,因此这个问题就解决了解:的长1225.1cmS扇形122150.7cm2因此,的长约为25.1cm,扇形AOB的面积约为150.7cm2课堂练习课时小结本节课学习了如下内容:1探索

7、弧长的计算公式lR,并运用公式进行计算;2探索扇形的面积公式SR2,并运用公式进行计算;3探索弧长l及扇形的面积S之间的关系,并能已知一方求另一方课后作业 练习活动与探究如图,两个同心圆被两条半径截得的的长为6 cm,的长为10 cm,又AC12cm,求阴影部分ABDC的面积分析:要求阴影部分的面积,需求扇形COD的面积与扇形AOB的面积之差根据扇形面积SlR,l已知,则需要求两个半径OC与OA,因为OCOAAC,AC已知,所以只要能求出OA即可解:设OAR,OCR12,On,根据已知条件有:得3(R12)5R,R18OC181230SS扇形CODS扇形AOB103061896 cm2所以阴影部分的面积为96 cm25

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3