ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:48.63KB ,
资源ID:1599850      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1599850-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022高三全国统考数学北师大版(理)一轮复习学案:高考大题专项(五) 突破2 圆锥曲线中的定点、定值问题 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022高三全国统考数学北师大版(理)一轮复习学案:高考大题专项(五) 突破2 圆锥曲线中的定点、定值问题 WORD版含解析.docx

1、突破2圆锥曲线中的定点、定值问题题型一圆锥曲线中的定点问题(多维探究)突破策略一直接法【例1】(2020全国1,理20)已知A,B分别为椭圆E:x2a2+y2=1(a1)的左、右顶点,G为E的上顶点,AGGB=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.解题心得圆锥曲线中定点问题的常见解法(1)要证明直线或曲线过定点,可以根据已知条件直接求直线或曲线的方程,方程一旦求出,即能找到直线或曲线过的定点,也就证明了过定点.(2)对于是否直线或曲线过定点问题,一般先假设过定点,并假设出定点坐标,根据题意选择参数,建立一个直线

2、系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求定点,否则说明假设不成立.(3)从特殊位置入手,找出定点,再证明该点符合题意.对点训练1(2020新高考全国1,22)已知椭圆C:x2a2+y2b2=1(ab0)的离心率为22,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AMAN,ADMN,D为垂足.证明:存在定点Q,使得|DQ|为定值.突破策略二逆推法【例2】设O为坐标原点,动点M在椭圆C:x22+y2=1上,过点M作x轴的垂线,垂足为N,点P满足NP=2NM.(1)求点P的轨迹方程.(2)设点Q在直线x=-3上,且OPP

3、Q=1.证明:过点P且垂直于OQ的直线l过椭圆C的左焦点F.解题心得由特殊到一般法求定点问题的方法:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.对点训练2已知抛物线C的方程y2=2px(p0),焦点为F,点P在抛物线C上,且点P到点F的距离比它到y轴的距离大1.(1)试求出抛物线C的方程.(2)若抛物线C上存在两动点M,N(M,N在对称轴两侧),满足OMON(O为坐标原点),过点F作直线交抛物线C于A,B两点,若ABMN,则线段MN上是否存在定点E,使得|EM|EN|AB|=4恒成立?若存在,请求出点E的坐标,若不存在,请说明理由.题型二圆锥曲

4、线中的定值问题突破策略直接法【例3】(2020山东滨州二模,20)已知椭圆C:x2a2+y2b2=1(ab0)经过点(2,1),离心率为22.(1)求椭圆C的方程;(2)设直线l:y=kx+t(t0)与椭圆C相交于A,B两点,若以OA,OB为邻边的平行四边形OAPB的顶点P在椭圆C上,求证:平行四边形OAPB的面积为定值.解题心得证明某一量为定值,一般方法是用一个参数表示出这个量,通过化简消去参数,得出定值.对点训练3(2020山东泰安三模,21)已知椭圆x2a2+y2b2=1(ab0)的右顶点为A,上顶点为B,O为坐标原点,点O到直线AB的距离为255,OAB的面积为1.(1)求椭圆的标准方

5、程;(2)直线l与椭圆交于C,D两点,若直线lAB,设直线AC,BD的斜率分别为k1,k2,证明:k1k2为定值.突破2圆锥曲线中的定点、定值问题例1(1)解由题设得A(-a,0),B(a,0),G(0,1).则AG=(a,1),GB=(a,-1).由AGGB=8得a2-1=8,即a=3.所以E的方程为x29+y2=1.(2)证明设C(x1,y1),D(x2,y2),P(6,t).若t0,设直线CD的方程为x=my+n,由题意可知-3n3.由于直线PA的方程为y=t9(x+3),所以y1=t9(x1+3).直线PB的方程为y=t3(x-3),所以y2=t3(x2-3).可得3y1(x2-3)=

6、y2(x1+3).由于x229+y22=1,故y22=-(x2+3)(x2-3)9,可得27y1y2=-(x1+3)(x2+3),即(27+m2)y1y2+m(n+3)(y1+y2)+(n+3)2=0.将x=my+n代入x29+y2=1得(m2+9)y2+2mny+n2-9=0.所以y1+y2=-2mnm2+9,y1y2=n2-9m2+9.代入式得(27+m2)(n2-9)-2m(n+3)mn+(n+3)2(m2+9)=0.解得n=-3(舍去),n=32.故直线CD的方程为x=my+32,即直线CD过定点32,0.若t=0,则直线CD的方程为y=0,过点32,0.综上,直线CD过定点32,0.

7、对点训练1解(1)由题设得4a2+1b2=1,a2-b2a2=12,解得a2=6,b2=3,所以C的方程为x26+y23=1.(2)设M(x1,y1),N(x2,y2).若直线MN与x轴不垂直,设直线MN的方程为y=kx+m,代入x26+y23=1得(1+2k2)x2+4kmx+2m2-6=0.于是x1+x2=-4km1+2k2,x1x2=2m2-61+2k2.由AMAN知AMAN=0,故(x1-2)(x2-2)+(y1-1)(y2-1)=0,可得(k2+1)x1x2+(km-k-2)(x1+x2)+(m-1)2+4=0.整理得(2k+3m+1)(2k+m-1)=0.因为A(2,1)不在直线M

8、N上,所以2k+m-10,故2k+3m+1=0,k1.于是MN的方程为y=kx-23-13(k1).所以直线MN过点P23,-13.若直线MN与x轴垂直,可得N(x1,-y1).由AMAN=0得(x1-2)(x1-2)+(y1-1)(-y1-1)=0.又x126+y123=1,可得3x12-8x1+4=0.解得x1=2(舍去),x1=23.此时直线MN过点P23,-13.令Q为AP的中点,即Q43,13.若D与P不重合,则由题设知AP是RtADP的斜边,故|DQ|=12|AP|=223.若D与P重合,则|DQ|=12|AP|.综上,存在点Q43,13,使得|DQ|为定值.例2(1)解设M(x0

9、,y0),由题意可得N(x0,0),设P(x,y),由点P满足NP=2NM.可得(x-x0,y)=2(0,y0),可得x-x0=0,y=2y0,即有x0=x,y0=y2,代入椭圆方程x22+y2=1,可得x22+y22=1,即有点P的轨迹方程为x2+y2=2.(2)证明(方法1)设Q(-3,m),P(2cos,2sin)(02),由OPPQ=1,可得(2cos,2sin)(-3-2cos,m-2sin)=1,即为-32cos-2cos2+2msin-2sin2=1,当=0时,上式不成立,则0y1),由OMON,得y1y2=-16,直线MN的斜率k=4y1+y2,直线MN:y-y1=4y1+y2

10、x-y124,整理可得y=4y1+y2(x-4),若直线AB斜率存在,设斜率为k,y=k(x-1),与y2=4x联立得ky2-4y-4k=0,设A(xA,yA),B(xB,yB),则|AB|=1+1k2|yA-yB|=41+1k2,若点E存在,设点E坐标为(x0,y0),|EM|EN|=1+1k2(y0-y1)1+1k2(y2-y0)=1+1k2-y1y2-y02+(y1+y2)y0=1+1k216-y02+4y0k,当|EM|EN|AB|=4时,16-y02+4y0k=16,解得y0=0或y0=4k(不是定点,舍去),则点E为(4,0),经检验,此点满足y20.设A(x1,y1),B(x2,

11、y2),则x1+x2=-4kt2k2+1,x1x2=2(t2-2)2k2+1.所以y1+y2=k(x1+x2)+2t=2t2k2+1.因为四边形OAPB是平行四边形,所以OP=OA+OB=(x1+x2,y1+y2)=-4kt2k2+1,2t2k2+1,所以点P坐标为-4kt2k2+1,2t2k2+1.又因为点P在椭圆上,所以4k2t2(2k2+1)2+2t2(2k2+1)2=1,即t2=2k2+12.因为|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=221+k22(2k2+1)-t22k2+1=231+k22k2+1,又点O到直线l的距离d=|t|1+k2.所以平行四边

12、形OAPB的面积SOAPB=2SOAB=|AB|d=23|t|2k2+1=62k2+12k2+1=6,即平行四边形OAPB的面积为定值.对点训练3解(1)直线AB的方程为xa+yb=1,即bx+ay-ab=0,则aba2+b2=255.因为三角形OAB的面积为1,所以12ab=1,即ab=2,解得a=2,b=1,所以椭圆的标准方程为x24+y2=1.(2)直线AB的斜率为-12,设直线l的方程为y=-12x+t,C(x1,y1),D(x2,y2),代入x24+y2=1,得2y2-2ty+t2-1=0,则y1+y2=t,y1y2=t2-12,所以k1k2=y1x1-2y2-1x2=y1y2-y1x1x2-2x2,所以x1x2-2x2=4(t-y1)(t-y2)-4(t-y2)=4t2-t(y1+y2)+y1y2-t+y2=4(y1+y2)2-(y1+y2)(y1+y2)+y1y2-(y1+y2)+y2=4(y1y2-y1),所以k1k2=14为定值.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3