1、四川省成都市新津中学2021届高三数学12月月考试题 文一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D. 2.已知(),其中为虚数单位,则复数在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知,则“”是“”成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.已知正项等比数列的前项和为,且,则公比的值为()A. B. 或C. D. 5.已知双曲线(,)的一条渐近线方程,且点为双曲线右支上一点,且,为双曲线左右焦点
2、,的面积为,且,则双曲线的实轴的长为( )A. 1 B. 2 C. 4 D. 6.已知某几何体三视图如图所示,则该几何体的各条棱中最长棱的长度为( )A 4 B. 5 C. D. 7.要得到函数的图象,只需将函数的图象上所有点的( )A. 横坐标缩短到原来的(纵坐标不变),再向左平移个单位长度B. 横坐标缩短到原来的(纵坐标不变),再向右平移个单位长度C. 横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位长度D. 横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度8.已知直线:上的两点,且,点为圆:上任一点,则的面积的最大值为( )A. B. C. D. 9.已知函数,满足且,都
3、有,则实数的取值范围为( )A. B. C. D. 10.已知正三棱锥中,所有棱长为4,分别为,上的点,且满足,当三棱锥的体积最大时,三棱锥的外接球的表面积为( )A. B. C. D. 11.已知函数是定义域为的偶函数,且满足,当时,(),则函数所有零点的和为( )A. 3B. 4C. 5D. 612.已知函数的导函数是偶函数,若方程在区间(其中为自然对数的底)上有两个不相等的实数根,则实数的取值范围是( )A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,若,则实数_.14.已知变量,满足约束条件,则的最大值为_.15.在 中,内角 所对边分别为 ,已
4、知,且,则面积的最大值为_16.直线:经过抛物线:()的焦点,与抛物线相交于,两点,过原点的直线经过弦的中点,并且与抛物线交于点(异于原点),则的取值范围是_.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第1721题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知数列的前项和满足,.(1)求证数列为等比数列,并求关于的表达式;(2)若,求数列的前项和.18. (12分)为了迎接2021年的高考,我校进行了第一次模拟考试,其中五个班的考试成绩在500分以上的人数如下表,为班级,表示500分以上的人数123452025303025(
5、1)若给出数据,班级与考试成绩500以上的人数,满足回归直线方程,求出该回归直线方程;(2)学校为了更好的提高学生的成绩,了解一模的考试成绩,从考试成绩在500分以上1,3班学生中,利用分层抽样抽取5人进行调研,再从选中的5人中,再选3名学生写出“经验介绍”文章,则选的三名学生1班一名,3班2名的概率.参考公式:,.19. (12分)已知在多面体中,平面平面,且四边形为正方形,且/,点,分别是,的中点(1)求证:面;(2)求该几何体的体积.20. (12分)已知椭圆:()左、右焦点分别为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切,点在椭圆上,(1)求椭圆的方程;(2)若直线:与椭圆交于
6、,两点,点,若,求斜率的取值范围.21. (12分)已知函数()(1)函数在点处切线方程为,求函数的极值;(2)当时,对于任意,当时,不等式恒成立,求出实数的取值范围.选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一个题计分.22.(10分)在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求曲线与曲线两交点所在直线的极坐标方程;(2)若直线的极坐标方程为,直线与轴的交点为,与曲线相交于两点,求的值23. (10分)已知().(1)当,时,求函数的定义域;(2)若,且对于任意,有恒成立,求的取值范围.
7、四川省新津中学高2018级(高三)12月考数学(文科)参考答案一、选择题:1.C 2.B. 3.A 4.C. 5.B. 6.D. 7.C 8.A. 9.C. 10.D 11.D. 12.B二、填空题:本题共4小题,每小题5分,共20分.13. 14.8 15. 16.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第1721题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.【详解】(1)由题可知,即.当时,得,当时,得,即,所以所以数列是首项为2,公比为2的等比数列,所以,故(2)由(1)知,则,两式相减得所以.18.【详解】(1)根据给出的数据
8、可知,可知,且经过点,可知,则回归直线方程为,故所求的回归直线的方程为.(2)根据分层抽样可知,1班选2名记为,3班选3名记为,所有的情况为:,共10种情况其中1班1名,3班2名的有,共有6种,所求的概率为.19.【详解】(1)过点交于点,连接,如下图所示:因为平面平面,且交线为,又四边形为正方形,故可得,故可得平面,又平面,故可得.在三角形中,因为为中点,故可得/,为中点;又因为四边形为等腰梯形,是的中点,故可得/;又,且平面,平面,故面面,又因为平面,故面.即证.(2)连接,作交于点,如下图所示:,可知多面体分为两部分,四棱锥,三棱锥,可知该几何体的体积为:.20.【详解】(1)依题意有,
9、由及椭圆的定义得.由余弦定理得即,又,解得,.故椭圆的方程为.(2)联立可得,则,即,又,设的中点,则,解得代入可得,整理可得,所求斜率的取值范围为.21.【详解】(1)函数的定义域为,可知,解得,可知在,时,函数单调递增,在时,函数单调递减,可知函数的极小值为,极大值为.(2)可以变形为,可得,可知函数在上单调递减,可得,设,可知函数在单调递减,可知,可知参数的取值范围为.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一个题计分.22.【详解】(1) 曲线的普通方程为:曲线的普通方程为:,即由两圆心的距离,所以两圆相交,所以两方程相减可得交线为,即.所以直线的极坐标方程为.(2) 直线的直角坐标方程:,则与轴的交点为直线的参数方程为,带入曲线得.设两点参数为,所以,所以,同号.所以。23.【详解】(1)当,时,函数,当时,可得;当时,可知,解得,可知无解;当时,可知故函数的定义域为或(2),根据函数解析式可知当时,取得最小值为,恒成立,可知,解得,故参数的取值范围为.