1、第一部分 专题四 第1讲1在等差数列an中,若a24,a42,则a6(B)A1B0C1D6解析:设数列an的公差为d,由a4a22d,a24,a42,得242d,d1,a6a42d0.故选B.2已知等比数列an满足a13,a1a3a521,则a3a5a7(B)A21B42C63D84解析:设an的公比为q,由a13,a1a3a521得1q2q47,解得q22(负值舍去)a3a5a7a1q2a3q2a5q2(a1a3a5)q221242.3已知an是等差数列,公差d不为零,前n项和是Sn.若a3,a4,a8成等比数列,则(B)Aa1d0,dS40Ba1d0,dS40,dS40Da1d0解析:由a
2、a3a8,得(a12d)(a17d)(a13d)2,整理得d(5d3a1)0,又d0,a1d,则a1dd20,又S44a16dd,dS4d20,故选B.4在等差数列an中,若a3a4a5a6a725,则a2a8_10_.解析:利用等差数列的性质可得a3a7a4a62a5,从而a3a4a5a6a75a525,故a55,所以a2a82a510.5已知数列an是递增的等比数列,a1a49,a2a38,则数列an的前n项和等于2n1.解析:由已知得,a1a4a2a38,又a1a49,解得或而数列an是递增的等比数列,a1a4,a11,a48,从而q38,即q2,则前n项和Sn2n1.6设Sn是数列an
3、的前n项和,且a11,an1SnSn1,则Sn.解析:an1Sn1Sn,Sn1SnSn1Sn,又由a11,知Sn0,1,即1,是等差数列,且公差为1,而1,1(n1)(1)n,Sn.7(2016辽宁协作体一模)已知数列an满足(an11)(an1)3(anan1),a12,令bn.(1)证明:数列bn是等差数列;(2)求数列an的通项公式解析:(1),bn1bn,bn是等差数列(2)由(1)及b11,知bnn,an1,an.8已知数列an满足an2qan(q为实数,且q1),nN*,a11,a22,且a2a3,a3a4,a4a5成等差数列(1)求q的值和an的通项公式;(2)设bn,nN*,求
4、数列bn的前n项和解析:(1)由已知,有(a3a4)(a2a3)(a4a5)(a3a4),即a4a2a5a3,所以a2(q1)a3(q1)又因为q1,故a3a22,由a3a1q,得q2.当n2k1(kN*)时,ana2k12k12;当n2k(kN*)时,ana2k2k2.所以an的通项公式为an(2)由(1)得bn.设bn的前n项和为Sn,则Sn123(n1)n,Sn123(n1)n,上述两式相减,得Sn12,整理得,Sn4.所以,数列bn的前n项和为4,nN*.9数列an满足:a12a2nan4,nN*.(1)求a3的值(2)求数列an的前n项和Tn;(3)令b1a1,bnan(n2),证明
5、:数列bn的前n项和Sn满足Sn22ln n.解析:(1)令n3,a12a23a3,令n2,a12a22,解得a3.(2)当n1,a11,当n2,nan,an(n2),当n1时代入a1也满足,故an.所以数列an为等比数列,所以Tn2.(3)当n1时,显然命题成立当n2时,bnan(TnTn1)TnTn1,Snb1b2b3bn1Tn22.f(x)1ln x,在(1,)为减函数,(可用导数证明)f(x)f(1)0,1ln x,1lnln nln(n1),故两边叠加得ln n,所以Sn221时,Tn3(323)(3225)(32n12n1),Tn33(222232n1)(3572n1)32nn24.又n1时,T13,适合上式,Tn32nn24.