ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:51.18KB ,
资源ID:1569152      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1569152-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022版高三全国统考数学(文)大一轮备考试题:第10章第2讲 双曲线(1) WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022版高三全国统考数学(文)大一轮备考试题:第10章第2讲 双曲线(1) WORD版含解析.docx

1、第十章圆锥曲线与方程第二讲双曲线练好题考点自测 1.给出以下关于双曲线的命题:双曲线y29-x24=1的渐近线方程是y=23x;若点(2,3)在焦距为4的双曲线x2a2-y2b2=1(a0,b0)上,则此双曲线的离心率e=2;若点F,B分别是双曲线x2a2-y2b2=1(a0,b0)的一个焦点和虚轴的一个端点,则线段FB的中点一定不在此双曲线的渐近线上;等轴双曲线的渐近线互相垂直,离心率等于2;若双曲线x2a2-y2b2=1(a0,b0)与y2b2-x2a2=1(a0,b0)的离心率分别是e1,e2,则1e12+1e22=1(称这两条双曲线互为共轭双曲线).以上说法正确的个数是()A.1B.2

2、C.3D.42.2019全国卷,10,5分文双曲线C:x2a2-y2b2=1(a0,b0)的一条渐近线的倾斜角为130,则C的离心率为()A.2sin 40 B.2cos 40 C.1sin50D.1cos503.2020全国卷,9,5分文设O为坐标原点,直线x=a与双曲线C:x2a2-y2b2=1(a0,b0)的两条渐近线分别交于D,E两点.若ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.32图10-2-14.2021大同市调研测试如图10-2-1,双曲线C:x2a2-y2b2=1(a0,b0)的左、右焦点分别为F1,F2,过F2作线段F2P与C交于点Q,且Q为PF2的中

3、点.若等腰三角形PF1F2的底边PF2的长等于C的半焦距,则C的离心率为()A.-2+2157 B.43C.2+2157 D.325.2018天津,7,5分已知双曲线x2a2-y2b2=1(a0,b0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.x24-y212=1B.x212-y24=1C.x23-y29=1D.x29-y23=16.2020北京,14,5分已知双曲线C:x26-y23=1,则C的右焦点的坐标为;C的焦点到其渐近线的距离是.7.2020全国卷,15,5分已知F为

4、双曲线C:x2a2-y2b2=1(a0,b0)的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为.拓展变式1.(1)2020广东七校第一次联考P是双曲线C:x22-y2=1右支上一点,直线l是双曲线C的一条渐近线.P在l上的射影为Q,F1是双曲线C的左焦点,则|PF1|+|PQ|的最小值为()A.1B.2+155C.4+155D.22+1(2)2020全国卷,11,5分文设F1,F2是双曲线C:x2-y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则PF1F2的面积为()A.72B.3C.52D.22.2020天津,7,5分设双曲线C的方程

5、为x2a2-y2b2=1(a0,b0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的一条渐近线与l平行,另一条渐近线与l垂直,则双曲线C的方程为()A.x24-y24=1B.x2-y24=1C.x24-y2=1D.x2-y2=13.2020成都三诊已知F1,F2是双曲线x2a2-y2b2=1(a0,b0)的左、右焦点,经过点F2且与x轴垂直的直线与双曲线的一条渐近线相交于点A,且6F1AF24,则该双曲线离心率的取值范围是()A.5,13B.5,3C.3,13D.7,3答 案第十章圆锥曲线与方程第二讲双曲线 1.D对于,双曲线y29-x24=1的渐近线方程应是y=32x,故不正确;

6、对于,双曲线的焦点为(-2,0),(2,0),2a=|(2+2)2+(3-0)2-(2-2)2+(3-0)2|=2,a=1,从而离心率e=2,所以正确;对于,F(c,0),B(0,b),FB的中点坐标(c2,b2)不满足双曲线的渐近线方程y=bax,所以正确;对于,由等轴双曲线的性质可得正确;对于,由共轭双曲线的性质可知正确.故选D.2.D依题意知,-ba=tan 130=tan(130-180)=-tan 50,两边同时平方得c2-a2a2=tan250=e2-1,e2=1+tan250=1cos250,又e1,e=1cos50,选D.【拓展结论】实际上,若双曲线x2a2-y2b2=1(a0

7、,b0)的一条渐近线的倾斜角为,则该双曲线的离心率e=|1cos|.3.B由题意知双曲线的渐近线方程为y=bax.因为D,E分别为直线x=a与双曲线C的两条渐近线的交点,所以不妨设D(a,b),E(a,-b),所以SODE=12a|DE|=12a2b=ab=8,所以c2=a2+b22ab=16,当且仅当a=b=22时等号成立.所以c4,所以2c8,所以C的焦距的最小值为8,故选B.4.C连接F1Q,由PF1F2是以PF2为底边的等腰三角形,且Q是PF2的中点,知F1QPF2,又|PF2|=c,所以|QF2|=c2,由双曲线的定义可得|F1Q|=c2+2a,根据F1QPF2和|F1F2|=2c得

8、,(c2)2+(c2+2a)2=(2c)2,化简整理得7c2-4ac-8a2=0,方程两边同时除以a2得7e2-4e-8=0,又e1,所以e=2+2157,故选C.5.C解法一因为直线AB经过双曲线的右焦点,所以不妨取A(c,b2a),B(c,-b2a),取双曲线的一条渐近线为直线bx-ay=0,由点到直线的距离公式可得d1=|bc-b2|a2+b2=bc-b2c,d2=|bc+b2|a2+b2=bc+b2c,因为d1+d2=6,所以bc-b2c+bc+b2c=6,所以2b=6,得b=3.因为双曲线x2a2-y2b2=1(a0,b0)的离心率为2,即ca=2,所以a2+b2a2=4,所以a2+

9、9a2=4,解得a2=3,所以双曲线的方程为x23-y29=1,故选C.解法二由直线AB过双曲线的右焦点且垂直于x轴,d1+d2=6,得双曲线的右焦点到渐近线的距离为3,所以b=3.因为双曲线x2a2-y2b2=1(a0,b0)的离心率为2,所以ca=2,所以a2+b2a2=4,所以a2+9a2=4,解得a2=3,所以双曲线的方程为x23-y29=1,故选C.6.(3,0)3双曲线C:x26-y23=1中,c2=6+3=9,c=3,则C的右焦点的坐标为(3,0),C的渐近线方程为y=36x,即x2y=0,则C的焦点到其渐近线的距离d=33=3.7.2设B(c,yB),因为B为双曲线C:x2a2

10、-y2b2=1上的点,所以c2a2-yB2b2=1,所以yB2=b4a2.因为AB的斜率为3,所以yB=b2a,b2ac-a=3,所以b2=3ac-3a2,所以c2-a2=3ac-3a2,所以c2-3ac+2a2=0,解得c=a(舍去)或c=2a,所以C的离心率e=ca=2.【易错警示】本题的易错点有两处:一是忽视题眼“AB的斜率为3”,由yB2=b4a2得yB=b2a;二是将双曲线中a,b,c的关系式与椭圆中a,b,c的关系式搞混.1.(1)D设双曲线的右焦点为F2,因为|PF1|-|PF2|=22,所以|PF1|=22+|PF2|,|PF1|+|PQ|=22+|PF2|+|PQ|.当且仅当

11、Q,P,F2三点共线,且P在Q,F2之间时,|PF2|+|PQ|最小,且最小值为点F2到直线l的距离.由题意可得直线l的方程为y=22x,焦点F2(3,0),点F2到直线l的距离d=1,故|PQ|+|PF1|的最小值为22+1,故选D.(2)B解法一设F1,F2分别为双曲线C的左、右焦点,则由题意可知F1(-2,0),F2(2,0),又|OP|=2,所以|OP|=|OF1|=|OF2|,所以PF1F2是直角三角形,所以|PF1|2+|PF2|2=|F1F2|2=16.不妨令点P在双曲线C的右支上,则有|PF1|-|PF2|=2,两边平方,得|PF1|2+|PF2|2-2|PF1|PF2|=4,

12、又|PF1|2+|PF2|2=16,所以|PF1|PF2|=6,则SPF1F2=12|PF1|PF2|=126=3,故选B.解法二(结论解法)设F1,F2分别为双曲线C的左、右焦点,则由题意可知F1(-2,0),F2(2,0),又|OP|=2,所以|OP|=|OF1|=|OF2|,所以PF1F2是直角三角形,所以SPF1F2=b2tan2=3tan45=3(其中=F1PF2),故选B.解法三设点P的坐标为(xP,yP),因为|OP|=2,则xP2+yP2=4,把yP2=4-xP2代入双曲线方程得|yP|=32,所以SPF1F2=12|F1F2|yP|,由题意可知|F1F2|=4,所以SPF1F

13、2=12432=3.故选B.【真题互鉴】本题与2019年全国卷(文)T10的已知和所求相似,解题思维一样,因此在平时训练中应重视真题的训练.附:2019全国卷,10,5分文已知F是双曲线C:x24-y25=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则OPF的面积为(B)A.32B.52C.72D.922.D解法一由题知y2=4x的焦点坐标为(1,0),则过焦点和点(0,b)的直线方程为x+yb=1,而x2a2-y2b2=1的渐近线方程为xa+yb=0和xa-yb=0,由l与一条渐近线平行,与一条渐近线垂直,得a=1,b=1,故选D.解法二由题知双曲线C的两条渐近线互相垂直,则a=b,即渐近线方程为xy=0,排除B,C.又知y2=4x的焦点坐标为(1,0),l过点(1,0),(0,b),所以b-00-1=-1,b=1,故选D.3.A不妨设A在第一象限,将x=c代入y=bax得A(c,bca),所以tanF1AF2=2cbca=2abtan6,tan4,即332ab1,即134a2b211b24a231c2-a24a23114e2-1435e2135e13.故选A.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3