1、1已知函数f(n)且anf(n)f(n1),则a1a2a3a100等于()A0B100C100 D10200解析:选B.由题意,a1a2a1001222223232424252992100210021012(12)(32)(99100)(101100)100.故选B.2在数列an中,a11,a22,且an2an1(1)n(nN*),则S100_.解析:由已知,得a11,a22,a3a10,a4a22,a99a970,a100a982,累加得a100a99983,同理得a98a97963,a2a103,则a100a99a98a97a2a15032600.答案:26003(2011高考课标全国卷)
2、等比数列an的各项均为正数,且2a13a21,a9a2a6.求数列an的通项公式;设bnlog3a1log3a2log3an,求数列的前n项和解:设数列an的公比为q.由a9a2a6得a9a,所以q2.由条件可知q0,故q.由2a13a21得2a13a1q1,所以a1.故数列an的通项公式为an.bnlog3a1log3a2log3an.故2,2.所以数列的前n项和为.4等差数列an中,a13,前n项和为Sn,等比数列bn各项均为正数,b11,且b2S212,bn的公比q.(1)求an与bn;(2)求.解:(1)由已知可得,解得q3,a26或q4(舍去),a213(舍去),an3(n1)(63
3、)3n,bn3n1.(2)Sn,(),(1)(1).一、选择题1(2012辽阳质检)已知数列an的前n项和Snan2bn(a、bR),且S25100,则a12a14等于()A16B8C4 D不确定解析:选B.由数列an的前n项和Snan2bn(a、bR),可得数列an是等差数列,S25100,解得a1a258,所以a12a14a1a258.2数列1,3,5,7,(2n1),的前n项和Sn的值为()An21 B2n2n1Cn21 Dn2n1解析:选A.该数列的通项公式为an(2n1),则Sn135(2n1)()n21.故选A.3若数列an的前n项和为Sn,且满足Snan3,则数列an的前n项和S
4、n为()A3n13 B3n3C3n13 D3n3解析:选A.Snan3,Sn1an13,两式相减得:Sn1Sn(an1an)即an1(an1an),3,即q3.又S1a13,即a1a13,a16.ana1qn163n123n.Snan323n33n13,故应选A.4已知函数f(x)x2bx的图象在点A(1,f(1)处的切线的斜率为3,数列的前n项和为Sn,则S2012的值为()A. B.C. D.解析:选D.f(x)2xb,f(1)2b3,b1,f(x)x2x,S201211.5设数列an是首项为1,公比为3的等比数列,把an中的每一项都减去2后,得到一个新数列bn,bn的前n项和为Sn,则对
5、任意的nN*,下列结论正确的是()Abn13bn2,且Sn(3n1)Bbn13bn2,且Sn(3n1)Cbn13bn4,且Sn(3n1)2nDbn13bn4,且Sn(3n1)2n解析:选C.因为数列an是首项为1,公比为3的等比数列,所以数列an的通项公式为an3n1,则依题意得,数列bn的通项公式为bn3n12,bn13n2,3bn3(3n12)3n6,bn13bn4.bn的前n项和为:Sn(12)(312)(322)(332)(3n12)(13132333n1)2n2n(3n1)2n.二、填空题6数列1,的前n项和Sn_.解析:由于an2(),Sn2(1)2(1).答案:7对于数列an,定
6、义数列an1an为数列an的“差数列”,若a12,an的“差数列”的通项为2n,则数列an的前n项和Sn_.解析:an1an2n,an(anan1)(an1an2)(a2a1)a12n12n2222222n222n.Sn2n12.答案:2n128若数列an是正项数列,且n23n(nN*),则_.解析:令n1,得4,a116.当n2时,(n1)23(n1),与已知式相减,得(n23n)(n1)23(n1)2n2,an4(n1)2,n1时,a1也适合an.an4(n1)2,4n4,2n26n.答案:2n26n三、解答题9(2011高考重庆卷)设an是公比为正数的等比数列,a12,a3a24.求an
7、的通项公式;设bn是首项为1,公差为2的等差数列,求数列anbn的前n项和Sn.解:设q为等比数列an的公比,则由a12,a3a24得2q22q4,即q2q20,解得q2或q1,因此q2.所以an的通项公式为an22n12n.Snn122n1n22.10数列an中a13,已知点(an,an1)在直线yx2上,(1)求数列an的通项公式;(2)若bnan3n,求数列bn的前n项和Tn.解:(1)点(an,an1)在直线yx2上,an1an2,即an1an2.数列an是以3为首项,2为公差的等差数列,an32(n1)2n1.(2)bnan3n,bn(2n1)3n,Tn33532(2n1)3n1(2
8、n1)3n,3Tn332533(2n1)3n(2n1)3n1,由得2Tn332(32333n)(2n1)3n192(2n1)3n1.Tnn3n1.11(探究选做)已知函数f(x)ax2bx(a0)的导函数f(x)2x7,数列an的前n项和为Sn,点Pn(n,Sn)(nN*)均在函数yf(x)的图象上(1)求数列an的通项公式及Sn的最大值;(2)令bn,其中nN*,求数列nbn的前n项和Tn.解:(1)f(x)ax2bx(a0),f(x)2axb,由f(x)2x7,得a1,b7,f(x)x27x,又点Pn(n,Sn)(nN*)均在函数yf(x)的图象上,Snn27n.当n1时,a1S16;当n2时,anSnSn12n8,an2n8(nN*)令an2n80,得n4,当n3或n4时,Sn取得最大值12.综上,an2n8(nN*),当n3或n4时,Sn取得最大值12.(2)由题意得b18,bn2n4,即数列bn是首项为8,公比是的等比数列,故nbn的前n项和Tn123222n2n4,Tn12222(n1)2n4n2n3,得:Tn23222n4n2n3,Tnn24n32(2n)24n.