1、课堂练通考点1(2014南昌质检)往外埠投寄平信,每封信不超过20 g,付邮费0.80元,超过20 g而不超过40 g,付邮费1.60元,依此类推,每增加20 g需增加邮费0.80元(信的质量在100 g以内)如果某人所寄一封信的质量为72.5 g,则他应付邮费()A3.20元B2.90元C2.80元 D2.40元解析:选A由题意得20372.5204,则应付邮费0.8043.20(元)故选A.2(2014广州模拟)在某个物理实验中,测量得变量x和变量y的几组数据,如下表:x0.500.992.013.98y0.990.010.982.00则对x,y最适合的拟合函数是()Ay2x Byx21C
2、y2x2 Dylog2x解析:选D根据x0.50,y0.99,代入计算,可以排除A;根据x2.01,y0.98,代入计算,可以排除B、C;将各数据代入函数ylog2x,可知满足题意故选D.3一种产品的成本原为a元,在今后的m年内,计划使成本平均每年比上一年降低p%,成本y是关于经过年数x(0xm)的函数,其关系式yf(x)可写成_解析:依题意有ya(1p%)x(0xm)答案:ya(1p%)x(0xm)4某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y48x8 000,已知此生产线年产量最大为210吨(1)求年产量为多少吨时,
3、生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解:(1)每吨平均成本为(万元)则4824832,当且仅当,即x200时取等号年产量为200吨时,每吨平均成本最低,最低为32万元(2)设可获得总利润为R(x)万元,则R(x)40xy40x48x8 00088x8 000(x220)21 680(0x210)R(x)在0,210上是增函数,x210时,R(x)有最大值为(210220)21 6801 660.年产量为210吨时,可获得最大利润,最大利润是1 660万元课下提升考能第组:全员必做题1设甲、乙两
4、地的距离为a(a0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图像为()解析:选D注意到y为“小王从出发到返回原地所经过的路程”而不是位移,用定性分析法不难得到答案为D.2某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是()Ay100x By50x250x100Cy502x Dy100log2x100解析:选C根据函数模型的增长差异和题目中的数据可
5、知,应为指数型函数模型3一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示某天0点到6点,该水池的蓄水量如图丙所示给出以下3个论断:0点到3点只进水不出水;3点到4点不进水只出水;4点到6点不进水不出水,则一定正确的是()A BC D解析:选A由甲、乙两图知,进水速度是出水速度的,所以0点到3点不出水,3点到4点也可能一个进水口进水,一个出水口出水,但总蓄水量降低,4点到6点也可能两个进水口进水,一个出水口出水,一定正确的是.4.某种新药服用x小时后血液中的残留量为y毫克,如图所示为函数yf(x)的图像,当血液中药物残留量不小于240毫克时,治疗有效设某人上午8:00第一次服
6、药,为保证疗效,则第二次服药最迟的时间应为()A上午10:00 B中午12:00C下午4:00 D下午6:00解析:选C当x0,4时,设yk1x,把(4,320)代入,得k180,y80x.当x4,20时,设yk2xb.把(4,320),(20,0)代入得解得y40020x.yf(x)由y240,得或解得3x4或40)(1)如果m2,求经过多长时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围解:(1)若m2,则22t21t2,当5时,2t,令2tx(x1),则x,即2x25x20,解得x2或x(舍去),此时t1.所以经过1分钟,物体的温度为5摄氏度(2)物体的温度总不低于2摄氏度,即2恒成立,亦m2t2恒成立,亦即m2恒成立令y,则020时,年销售总收入为260万元记该工厂生产并销售这种产品所得的年利润为y万元,则y(万元)与x(件)的函数关系式为_,该工厂的年产量为_件时,所得年利润最大(年利润年销售总收入年总投资)解析:当x20时,y(33xx2)x100x232x100;当x20时,y260100x160x.故y(xN*)当020时,160x140,故x16时取得最大年利润答案:y(xN*)16