1、4-1.2.2同角三角函数的基本关系(3)教学目的:知识目标:根据三角函数关系式进行三角式的化简和证明;能力目标:(1)了解已知一个三角函数关系式求三角函数(式)值的方法。(2)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力; 德育目标:训练三角恒等变形的能力,进一步树立化归思想方法;教学重点:同角三角函数的基本关系式教学难点:如何运用公式对三角式进行化简和证明。授课类型:新授课教学模式:启发、诱导发现教学.教 具:多媒体、实物投影仪教学过程:一、复习引入:1同角三角函数的基本关系式。(1)倒数关系:,(2)商数关系:,(3)平方关系:,(练习)已知,求2tancos= ,cot
2、sec= ,(sec+tan)( )=1二、讲解新课: 例8已知,试确定使等式成立的角的集合。 解:=又, 即得或所以,角的集合为:或例9化简解:原式= 说明:化简后的简单三角函数式应尽量满足以下几点:(1)所含三角函数的种类最少;(2)能求值(指准确值)尽量求值;(3)不含特殊角的三角函数值。例10求证:证法一:由题义知,所以左边=右边原式成立证法二:由题义知,所以又,证法三:由题义知,所以,例11求证:证明:左边 ,右边所以,原式成立。总结:证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边(如例5的证法一);(2)证明
3、左右两边同等于同一个式子(如例6);(3)证明与原式等价的另一个式子成立,从而推出原式成立。例12已知,求解:由等式两边平方:(*),即,可看作方程的两个根,解得又,又由(*)式知因此,三、巩固与练习1. 求证:小结:化简三角函数式,化简的一般要求是:(1)尽量使函数种类最少,项数最少,次数最低;(2)尽量使分母不含三角函数式;(3)根式内的三角函数式尽量开出来;(4)能求得数值的应计算出来,其次要注意在三角函数式变形时,常常将式子中的“1”作巧妙的变形,如:1=2、已知方程的两根分别是,求 解: (化弦法)3、已知 证:由题设: 4、消去式子中的解:由由 (平方消去法)四、小 结:本节课学习了以下内容:1运用同角三角函数关系式化简、证明。2常用的变形措施有:大角化小,切割化弦等。五、课后作业:六、板书设计:w.w.w.k.s.5.u.c.o.m